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Introduction

Ce mémoire comporte deux parties distinctes.

e La premiere partie concerne une étude d’algebres n-aires. Une algebre n-aire est un espace vectoriel
sur lequel est définie une multiplication sur n arguments. Classiquement les multiplications sont binaires,
mais depuis l'utilisation en physique thorique de multiplications ternaires, comme les produits de Nambu,
de nombreux travaux mathématiques se sont focalisés sur ce type d’algebres. Deux classes d’algebres n-
aires sont essentielles: les algebres n-aires associatives et les algebres n-aires de Lie. Nous nous intéressons
aux deux classes. Concernant les algebres n-aires associatives, on s’intéresse surtout aux algebres 3-aires
partiellement associatives, c’est-a-dire dont la multiplication vérifie I'identité

((xy 29 x3) x4 25)+ (21 - (T2 - 23 - 24) - 5) + (w1 - 22+ (T3 - 24 - 25)) = 0.

Ce cas est intéressant car les travaux connus concernant ce type d’algebres ne distinguent pas les cas n pair
et n-impair. On montre dans cette theése que le cas n = 3 ne peut pas étre traité comme si n était pair.
On étudie en détail I’algebre libre 3-aire partiellement associative sur un espace vectoriel de dimension finie.
Cette algebre est graduée : L(V) = @,>0L”(V). On calcule précisément les dimensions des composantes
pour p=1,2,3,4,5,6,7. On donne dans le cas général un systéme de générateurs ayant la propriété qu'une
base est donnée par la sous famille des éléments non nuls. Les principales conséquences sont

1. L’algebre libre 3-aire partiellement associative est résoluble.

2. L’algebre libre commutative 3-aire partiellement associative est telle que tout produit concernant 9
éléments est nul. soit L.(V) = Go<p<3LP (V).

3. L’opérade quadratique correspondant aux algebres 3-aires partiellement associatives ne vérifient pas la
propriété de Koszul.

On s’intéresse ensuite a I'étude des produits n-aires sur les tenseurs. L’exemple le plus simple est celui d’'un
produit interne sur des matrices non carrées. Nous pouvons définir le produit 3-aire donné par A-* B-C. On
montre qu’il est nécessaire de généraliser un peu la définition de partielle associativité. Nous introduisons
donc les produits o partiellement associatifs ot o ets une permutation du groupe %,,.

Concernant les algebres de Lie n-aires, deux classes d’algebres ont été définies: les algebres de Fillipov
(aussi appelées depuis peu les algebres de Lie-Nambu) et les algebres n-Lie. Cette derniére notion est tres
générale. La condition de Jacobi sécrit

Z (_1)6(U)M(N((Eo‘(l)a T 7xa'(n))7 To(n+1), " 7x0(2n—1)) =0.

o€EYon—1

Quant aux algebres de Lie de Fillipov, la condition est

[[Ul,"' 7Un],111,"' 7Un—1] = [[Uhvl"" 7'Un—1]7u27"' ,Un] + [Ul,[uzﬂ)l,"' 7'Un—1]7u37"' ,Un]

+...+[u17~-~ ,[Un,’l)l,"' 7”7171]]

Cette derniere notion, tres important dans 1’étude de la mécanique de Nambu-Poisson, est un cas particulier
de la premiere. Mais pour définir une approche du type Maurer-Cartan, c’est-a-dire définir une cohomologie
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iv INTRODUCTION

scalaire, nous considérons dans ce travail les algebres de Fillipov comme des algebres n-Lie et développons
un tel calcul dans le cadre des algebres n-Lie. On s’intéresse également & la classification des algebres n-aires
nilpotentes.

Le dernier chapitre de cette partie est un peu a part et reflete un travail poursuivant mon mémoire de
Master. Il concerne les algebres de Poisson sur ’algebre des polynéomes. On commence a présenter le crochet
de Poisson sous forme duale en utilisant des équations de Pfaff. On utilise cette approche pour classer les
structures de Poisson sur C[X7, X5, X3] non homogene. Le lien avec les algebres de Lie est clair. Du coup
on étend notre étude aux algebres de Poisson dont l'algebre de Lie sous jacent est rigideet on applique les
résultats aux algebres enveloppantes des algebres de Lie rigides.

e La partie 2 concerne l'arithmétique des intervalles. Cette étude a été faite suite & une rencontre avec
une société d’ingéniérie travaillant sur des probleémes de controle de parametres, de probléme inverse (dans
quels domaines doivent évoluer les parametres d’un robot pour que le robot ait un comportement défini).
Dans le cadre de l'arithmétique des intervalles, les éléments sont les variables et les opérations sur les
intervalles sont définies en suivant la regle: le résultant de 'opération de deux intervalles doit étre l'intervalle
contenant les résultants de la méme opération sur les éléments des deux intervalles. Ces opérations, I’addition,
la multiplication, la soustraction, ne suivent pas les regles de 'arithmétique classique. Par exemple la
multiplication n’est pas distributive par rapport a l’addition, ce qui pose quelques problémes calculatoires.
Dans ce travail, on définit un modele algébrique, enplongeant ’ensemble des intervalles dans une algebre
associative de dimen,sion 4. Ceci permet de mener un calcul formel algébrique sur les intervalles. Par contre
le résultat du produit est plus large que le résultat espérer (il faut controler a tout instant les opérations,
sinon trés rapidement les calculs sur les intervalles peuvent résulter sur un intervalle résultat pouvant tre
parexemple égal a R. Nous montrons qu’il existe une suite d’algebre associative de dimension arbitraire, dans
chacune desquelles nous pouvons plonger I'ensemble des intervalles mais avec uneprécision sur les calculs de
plus enplus grande. On applique ces résultats a des problemes de diagonalisation de matrices d’intervalles.
Une approche des intervalles infiniment petits est également abordée.
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Chapter 1

(2k + 1)-ary partially associative
algebras and coalgebras

An n-ary algebra is a vector space provided with a multiplication given by a n-linear map. A 3-ary algebra
is partially associative if the product satisfies

((Il'IQ'Ig)'LE4'I5)+(CE1'(IQ'I’g'I4)'I5)+(I1'IQ'(Ig'I4'$5))iO.

If L(V) = @®,>0L**T(V) denotes the free partially associative 3-ary algebra on a vector space V, we compute
the dimensions of the components for p < 7 and give a system of generators for all the components. We
show that this system is a basis if and only if none of these generators is zero. It permits to show that
the corresponding operad doesn’t verify the Koszul property. We describe the operadic cohomology of the
n-ary partially associative algebras. In the last part we introduce the notions of n-ary partially and totally
coassociative coalgebras generalizing (binary) coassociative coalgebras and extend the common properties
between associative algebras and coassociative coalgebras to the n-ary case.

1.1 Introduction

There is no need to explain the interest of the class of associative algebras when we study binary algebras.
So when we explore n-ary algebras, that is, algebras with an n-linear operation, it is natural to generalize
the associativity in the binary case to the n-ary case. There exists two usual ways to generalize it, called
partial and total associativity (see [17]) and more recently o-partial and o-total associativity ([55]). The
partially and totally associative algebras for even n where considered by Gnedbaye ([55]). He studied the
corresponding free algebras and the associated operads. The results of [17] can be understood as a natural
generalization of the binary case n = 2. But the case of odd n behaves in a completely different way. An
explanation can be done in terms of operads. If we consider for example the operad for partially associative
n-ary algebras with n = 2k + 1 < 7, it is non-Koszul ([43]) so the natural homology of the free algebra is
not trivial, although the operad for partially associative n-ary algebras with n = 2k is Koszul. If P is a
quadratic operad generated by an operation of arity n and degree d, then the generating operation of P' has
the same arity but degree —d 4+ n — 2, i.e. for n odd, the Koszul duality does not preserve the parity of the
degree of the generating operation.

In this paper we study the free 3-ary partially associative algebra generated by a finite set. Since the
coefficients of the generating series of an operad coincide with the dimensions of the homogeneous components
of the corresponding free algebra computing of the first components leads to the result that the operad for
3-ary partially associative algebras cannot be Koszul. A main consequence of this property concerns the
deformation theory. If we write a deformation of an n-ary partially associative algebra as a formal series
p = Y t'p;, thus the linear part ¢ is a 2-cocycle of the deformation cohomology (see [42] and [43]). If
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n = 2, uo is associative and this cohomology is the Hochschild cohomology of pg, that is the natural
cohomology given by the corresponding operad. If n = 3 and pg partially associative, as the corresponding
operad is not Koszul, these cohomologies differs. In this case, following [43], we have to consider 3-ary
multiplication of degree d. We determine explicitly the operadic complex for any n-ary partially associative
multiplication of degree 1. If n is even, we find the same result as in [15]. To understand the importance of
the degree of the multiplication, we determine the spaces of cochains for a n-ary partially associative algebra
with a multiplication of degree 0 and coboundary operators whose actions on cochains are similar to the
previous one. In this case, we obtain a complex whose space of cochains depends on the partially associative
multiplication.

In the last section we introduce the notions of coalgebras for m-ary algebras, that is, n-ary coalgebras.
We generalize the common properties relating associative algebras and coassociative coalgebras. So the
dual space of a n-ary partially coassociative coalgebra can be provided with a structure of an n-ary partially
associative algebra, the dual space of a finite dimensional associative algebra can be provided with a structure
of n-ary partially coassociative coalgebra structure and also, if (A, ) is an associative algebra and (M, A)
an n-ary totally coassociative coalgebra, the space Hom(M,A) can be provided with an n-ary partially
associative algebra structure.

1.2 Associative n-ary algebras

Let K be a field of characteristic zero. An n-ary algebra (V, u) is a K-vector space V with a linear map
Ve - v.
In what follows, Io®u and u® Iy means y and, for any positive integer k, I, is the identity map of End(V ®¥).

Definition 1 The n-ary algebra (V, p) is
e partially associative if p satisfies

n—1

Z(_l)p(n_l)ﬂo (I ®p®Inp-1) =0 (L.1)

p=0
e totally associative if p satisfies
po(p®ln1)=po(lp®@u®Ihp 1), (1.2)
foranyp=20,--- ,n—1.
Example : Gerstenhaber products. Let A be a (binary) associative algebra and H*(A, A) its Hochschild

cohomology. The space of k-cochains is C*(A) = Homg(A®*, A). Gerstenhaber ([15]) defined a graded pre-
Lie algebra @;C*(A) with the product

enm : C"(A) x C™(A) — C"T™ 1 (A)

given by

m

(.f ®n,m g)(X1 @ Q X7L+m—1) = Z(_l)(iil)(mil)f(xl K- & g(Xi - 'Xi-',-m—l) - Xn-‘rm—l)'
=1

The k-cochain p which satisfies the identity p ey, 1t = 0 and provides A with a k-ary partially associative
structure.

Remark. There exists a generalization of the notions of partial and total associativity leading to a natural
extension of the classical product of matrices to hypercubic matrices. Let o be an element of the symmetric
group %, of degree n and consider the endomorphism of V®" given by

by (e ®--©e;,) = Cipmry B B Cipp,y
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An n-ary algebra (V, u) is

e g-partially associative if p satisfies

n—1

ST ()P De(oP) o (I, @ (1o ¢Y) @ In—p-1) = 0 (1.3)

p=0

where £(7) is the signature of the permutation 7.

e o-totally associative if u satisfies
o (0 Int) = o (I, & (10 6%) ® Ln_p1), (1.4)

forany p=0,--- ,n—1.
In the particular case, where o = Id we get partial and total associativity. In [55] we have defined a 2k + 1-

product sg-totally associative on the vector space T(f’(E) of tensors of ¢ contravariant and p covariant type
on a vector space E where s is the permutation

se(l, - 2k +1) = (2k +1,2k,--- ,2,1).

1.3 Free 3-ary partially associative algebras

The free n-ary totally associative algebras (for arbitrary n) and the free n-ary partially associative algebras
for even n are described in [17] and [43]. The methods used for the study of the free n-ary partially associative
algebras do not work for odd n. In this section, we present the case n = 3.

Let L(V,-) be the free 3-ary partially associative algebra on the K-vector space V', where x -y - z denotes
the 3-ary multiplication of L(V'). This algebra admits a natural grading

L(V,") = @21 LV

with LY(V) =V, L3(V) = V&3, We denote by F(V,-) the free 3-ary algebra on V corresponding to a 3-ary
product (with no relations). This algebra is also graded

F(V,) = @ FPHY(V)
with FY(V) =V, F3(V) = V®3 and
F2p+1(v) = EB(a,b,c)eD(2p+1,?))F"l(vv) ® Fb(v) ® FC(V)a

where D(k,3) is the set of triples (a,b,¢) of odd positif integers such that a + b+ ¢ = k. Then, for p > 1,
L?PT1(V) is a quotient space of F2PT1(V).

i) Coding a vector of F?P*1(V). We denote by (v; - va - v3) a vector of L3(V) or F3(V) which is a
3-product of 3 vectors of V. An element of F?P*1(V) is a linear combination of vectors which are written as
a word (wq - wy - w3) with wy € F4(V),wy € F*(V),w3 € F¢(V) and (a,b,c) € D(2p+ 1, 3) so an element of
F?Pt1(V) is a linear combination of vectors vy - va - - - - Vg - vop41 of length 2p+ 1 with p inserted parenthesis,
each parenthesis containing exactly 3 vectors. For example (v;-(vq-(v3-v4-v5)-v6)-v7) € F7(V). If we consider
a basis of V, then F??*1(V) is generated by all the words of lenght 2p+ 1 constructed on these basis vectors.
Each of these words contains exactly p parentheses. Such words will be called primitive vectors of L?P+1(V).
We say that a left parenthesis is at the position k if it is between the k£ — 1 and the k vectors appearing
in the word. Thus the position of the parentheses can be coded by the position of the left parentheses. To
simplify, we forget the first left parenthesis, which is always before the first vector (and the corresponding
right parenthesis which is after the last vector). Thus in F°(V') the left parenthesis are coded by {1}, {2}, {3}
and corresponds respectively to the word ((vy-ve-v3)-v4-v5), (v1-(va-v3-v4)-v5), (V1 V2 (v3-v4-v5)). In F7(V),
the left parenthesis are coded by {11},{12},{13},{14},{15},{22},{23},{24},{25},{33},{34},{35}. For
example (vy - (vg - (v3 - vg - v5) - vg) - v7) corresponds to {23}.
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Lemma 1 A (p—1)-sequence {ny---n,_1} of positive integers is a coding of a primitive vector of F?PT1(V')
or L** Y (V) if and only if 1 < ny < 3,m1 < ng < 5,---,np_2 < n,_1 < 2p— 1. Such a sequence is
called admissible (p — 1)-sequence or coding vector of length p — 1. Moreover considering a coding vector
{nina---ny_1} and a vector vi ®@ -+ ® vop1 of VL we get only one primitive vector of F*P+1(V) by
bracketing with the defined coding.

The condition on a (p—1)-sequence to be a coding of a primitive element of F?P*1(V) or L2P+1(V) traduce
that the multiplication is ternary. For example 16 is not an admissible 2-sequence. There is no 3-product of
7 vectors corresponding to this sequence.

We denote by C,_; the linear space generated by the coding vectors of length p — 1. We assume that in

this space all the coding vectors of length p — 1 are independent. Thus F?PT1(V) = C,_; @ V®?PTL For
example, if p = 2, then

Ch = span({1},{2},{3})
and
dim F®(V) = 3 - dim V®°,

ii) Coding the relations of L??T1(V).

The vector space L?*1(V) is a quotient space of F?PTL(V). Let R**(V) be the linear subspace of
F?P+1(V) generated by the relations defining L2’ (V). We denote by C,_; the linear subspace of Cj_1
corresponding to the coding relations of R?P*1(V) for p > 2. Thus we have

2p+1

Rzp-‘rl(v) _ Cp71 Q V®

and
2p+1

L2p+1(v) = (517*1/017*1) ®V® :
Examples
1. If p=2,dimCy = 3, C; = span({1} + {2} + {3}) and

dim L(V) = 2dim V®”.

2. If p=3, dimCs = 12, and

Cy = span({11} + {14} + {15}, {12} + {22} + {25}, {13} + {23} + {33},
{14} + {24} + {34}, {15} + {25} + {35}, {11} + {12} + {13},
{22} + {23} + {24}, {33} + {34} + {35}).

Thus dim Cy = 8 and
dim L7(V) = 4dim V®".

Proposition 1 All relations in Cp—1 are obtained from the relations in Cp_o by the two following rules:

o Consider an element of Cp_o. For any coding vector {i1,--- ,ip,—2} appearing in the linear presentation
of the element), we add the index i in front of this coding where i is successively equal to 1,2,3 and we
replace i by i, + (i — 1) for all the elements {i1,--- ,ip—2} of the element of Cp_o.

o Consider an element of Cp_o. For all {i1,--- ,ip—o} appearing in the linear presentation of the element,
we add the index i in front of this coding where i is successively equal to 1,2,--- ,2p —1 and, if i1 <1,
we conserve i1, otherwise we replace i1 by i1+ 2, and we apply the same rule for all indices that follow.
Then we reorder subscripts to get an admissible sequence (Lemma 4 ).
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This proposition permits to obtain the description of L?P*! directly from the one of L?P~ 1.

Example. We consider {11} + {12} 4+ {13} € C5. We obtain the following elements of C3 (and relations in
Fo(V)):

{111} + {112} + {113} we added 1,

{222} + {223} + {224} we added 2 and changed i; by 4; + 1,

{333} + {334} + {335} we added 3 and changed i; by 4; + 2,

{111} + {114} + {115} we added 1 and changed 4; by i; + 2 if 4; > 1,
{112} + {122} + {125} we added 2 and changed 4; by i; + 2 if §; > 2,
{113} + {123} + {133} we added 3 and changed i; by i; + 2 if i; > 3,
{114} + {124} + {134} we added 4 and reorganized the sequence,
{115} + {125} + {135} we added 5 and reorganized the sequence,
{116} + {126} + {136} we added 6 and reorganized the sequence,
{117} + {127} + {137} we added 7 and reorganized the sequence.

Thus 8 elements of Cy lead to 80 relations of C which determine the space RY(V).

Remark: Symmetric elements, symmetric relations. Let {i1i2---i,} be a coding vector of ép. It
defines a vector of F?P+3 which is written with p parentheses. For this vector we consider the position of
the right parentheses counted from the right side. This sequence {j1j2 - - - jp} satisfies Lemma 4 and belongs

to Cp. Let us consider the linear map
5:Cp — Cp
given by
s({iviz -+ ip}) = {jrja- - Jp}-
It satisfies
s* =Id.

A coding vector {ijiz---ip} of év’p is symmetric if
s({inia---ip}) = {inia - ip}.
More generally, a vector v of 6’; is symmetric if
s(v) = v.

The elements of C,/C, determine the relations of definition of L2+3. We call such a relation symmetric if
the corresponding vector of C), is symmetric. The generating relation of C; is given by the symmetric vector

142+ 3 of C; because s(1) = 3 and s(2) = 2. This implies that the symmetric of any vector of C,, is in C).
In other words if we have a relation of definition of L?P*1(V) we have also the symmetric relation amongst
the relations of definition of L2PF1(V).

iii) Determination of dim L?**}(V) for 1 < p <7.
Proposition 2 If m =dimV, then
o dim L3(V) = dim V¥ = m3.

)
V) =2m® and {{1},{3} = s({1})} is a basis of C1/C}.
)
)

(
o dim L( 2
dim L7(V) = 4m” and {{11},{13},{35} = s({11}), {33} = s({13})} is a basis of Ca/Cs.
dim L9(V) = 5m® and {{113}, {133}, {355} = s({113}), {335} = s({133}), {117}} is a basis of C3/Cs.

dim L' (V) = 6m!! and a basis of Cy/Cy is

({1133}, {1335} , {3557} = s({1133}), {3355} = s({1335}), {1177}, {1379} = s({1177})}
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o dim L'3(V)) = 7m'3 and {{11335} {13355} , {35577} , {33557}, {11779}, {13399}, {11399} } is a basis
Of C5/C5.

o dim L*(V) = 8m!5 and
({13355}, {133557}, {355779) , {335577}, {117799} , {1335(11)(13)}, {11399(11)}, {1339(11)(11)}}
is a basis of 6';/06.

Proof. The first two cases are clear.

e dim L7 (V) = 4m”. To simplify, we use ij instead of {ij}.

1) 25=11
2) 15=—11— 35,
3) 14 = 35,
4) 22=13,
5) 12=—11-13,
6) 34=—33—35,
7) 23=-13-33,
8) 24 =33,

a basis of 6’;/02 is
{11,13,35 = s(11), 33 = 5(13)}.

e dim L(V) = 5m?. To simplify, we use ijk instead of {ijk}. At this step for the first time some trivial
monoidal identities 15k = 0 occur. More precisely, we have

0 =111=114=115=125 =135 = 136 = 144 = 147 = 222 = 225 = 226 = 236 = 246 = 247 = 255,
= 333 = 336 = 337 = 347 = 357.

The other identities are reduced to:

a) 113 =122 = —112 = —137 = —227 = 237,

b) 355 = s(113) = 145 = —146 = —155 = 346 = —356,
¢) 133=124=—134 =223 = —224 = —233,

d) 335 =s(133) = —235 = —244 = 245 = —334 = 344,
€) 117 = —116 = 126 = —157 = —256 = 257,

f) 123 = —133+ 113,

g) 345 = 335 — 355,

h) 127 =113 + 117,

i) 156 = 117 + 355,

4) 234 =133+ 335,

Remark that the second line is symmetric to the first line, the third and fourth line are symmetric to each
other. We have also that s(117) = 157 and more generally the symmetric of the fifth line is itself (modulo
the sign). In the same way, s(f) = g, s(h) =i and s(j) = j. For symmetry reasons, we choose as a basis of
C3/Cs,

{113,133, 355,335,117}.

e dim L' (V) = 6m!!. Any coding vector that is deduced from a trivial one in C3/Cs is a trivial coding
vector in C4/Cy. Then we have the new trivial vectors:

0 =1122=1125=1126 = 1127 = 1137 = 1169 = 1179 = 1227 = 1237 = 1248 = 1266 = 1269 = 1346
= 1348 = 1377 = 1455 = 1458 = 1459 = 1468 = 1469 = 1555 = 1558 = 1559 = 1569 = 2233 = 2237
= 2238 = 2248 = 2277 = 2347 = 2348 = 2358 = 2359 = 2377.
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The non trivial identities are

1133 = —-1233 = —1123 = 1124 = —1134 = 1223 = —1224 = —1249 = —1339 = 1349 = —2239 = 2249
= 2339 = —2349,

1335 = —1235 = —1244 = 1245 = —1334 = —1345 = —2234 = 2235 = 2244 = —2245 = 2334 = —2335
= —2344 = 1344,

1177 = —=2578 = —1167 = 1168 = —1178 = 1267 = —1268 = —1277 = —2567 = 2568 = 2577 = —1568
= —1577 = 1578

1234 = 1335+ 1133,
1239 = 1133+ s(1177),
1278 = s(1177) + 1177,
2345 = 1335 + s(1335).

and their symmetric identities. Thus, we can choose as a basis the following family

{{1133}, {1335} , {3557} = 5(1133), {3355} = s(1335), {1177}, {1379} = s(1177)}.

o dimLB(V) = Tm!3, dim L'*(V) = 8m!'5. In these cases the dimensions have been computed with

Mathematica and the presented coding vectors form a basis of 6'; /Cp. For n > 15, the computations with
Mathematica become impossible because of problems of memory. But in the next paragraph, we are going
to describe generators of C),/C), in the general case.

v) The general case. In order to visualize and to better understand the relations that appear in any
dimension, and especially to determine a minimal system of generators we represent each coding vector of
C, by a planar rooted tree with (2p + 3) leaves and only 3-branching nods (i.e. vertices have precisely 3
incoming edges), that is, three entries and one exit, since the multiplication is 3-ary (see [?, Section 4] or [45,
I1.1.5] for terminology). We denote by 73,43 the set of all such trees. The leaves are the external edges that
is the edges which have only one adjacent vertex. The root vertex of a tree is at the depth 0 and the level of
a vertex v is its distance to the root, that is, the number of vertices between v and the root vertex. The level
k of a tree is then defined by the vertices of level k. The high of a tree is the maximal level of the vertices

more one. We extend the definition to 7; by considering ‘ , the one-point set consisting of the exceptional
tree with one leg and no internal vertex. This tree will be considered of high 0. The set 73 contains only

one tree \Vthat represents the vector {} of Co and has the high 1. Likewise 75 contains the trees

\}>V \</ y that represent respectively the vectors {3}, {1} = s({3}), {2} of C}, all of

high 2. Note that since {2} = {1} — {3}, a basis of C;/C}, is represented by the following trees:

WXy

A BC

A tree T of Tapy3 is of type W with A € Tog, 43, B € Tap,13 and C € Topqys, k1 + ko + ks = p — 1,
kiell-1,---,p—1]=ZNO[-1,--- ,p— 1] and its high h(T) is 1 + sup(h(A), h(B), h(C)).

As there is the one-to-one correspondence between the coding vectors and their corresponding trees we
will identify the coding vector to its corresponding tree.

By subtree we mean a connected part of a tree obtained from this tree by cutting nodes.

A B C
Definition 2 We say that a tree T of has no central branch if it has no subtree of type W
with B different of the exceptional tree.
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For example, the trees corresponding to {1} and {3} are with no central branches whereas {2} has one.

Proposition 3 A tree T is with no central branches if and only it has not the tree corresponding to {2} as
a subtree.

Lemma 2 There exists a system of generators of Z}':,/Cp which is represented by trees without central
branches.

Proof. We use recursively the relation {2} = {1} — {3} from the bottom to the top of the tree(s) to obtain
a linear combination of trees without the tree {2} as subtree. The procedure assure that a subtree {2} can
only appear higher in the trees obtained at the next steep of the reduction so applying this rule recursively
we will obtain the announced result.

Example.
{22} = —{12} — {25} = {11} + {13} — {25}

and the trees representing the last vector don’t contain central branches.

Remark. The chosen basis of ,C'; /C> is represented by the following trees

VO N Y

In L°(V) some identically null products appear for the first time, i.e. some coding vectors of C~'3/C3 are zero.
Those whose associated trees are without central branches are the following: {357}, {135}, {115} and their
symmetrical {111}, {333}, {337}. We deduce:

Proposition 4 FEvery tree that represents a coding vector and that contains one of the following trees as
subtree

Y Yy

represents the null vector.

Corollary 3 Any tree with no central branches which has as subtree at level at least 1 the tree

\@/ or \y/w\%/ represents a null coding vector.

We denote by 71(A,C, E,G), T2(A,C, E,G), T3(A, C, E,G), the following trees where the letters A,C, E,G
represent grafted trees.
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We will denote the exceptional tree by 0 that we will also call the trivial tree. For example, 77(4,0, E,G)
E G

corresponds to

To simplify we shall say that two trees are equal if they represent two coding vectors that are equal; a tree
is representing the null vector if its corresponding coding vector is null.

Proposition 5 Let us consider the tree T,(A,C, E,G).
1. If G #0 and A#0 then T1(A,C,E,G) =0 for any C and E.
2. If G#0 and A=0 then T;(0,C, E,G) = —13(0,C, E, G).
3. If G=0 and A #0 then T,(A,C,E,0) = —T3(A,C, E,0).
4. If G=0 and A=0 then T;(0,C,E,0) = —=75(0,C, E,0) — 73(0,C, E, 0).

Proof. From the identity {15} = — {11} — {35}, we obtain that T;(A,C,E,G) = —T2(A,C, E,G) —
To(A,C,E,G). TEA#0, TH(A,C,E,G) = 0. It G # 0, Ts(A,C,E,G) = 0. If A = G = 0, thus we
obtain 77(0,C, E,0) = —73(0,C, E,0) — 73(0,C, E, 0).

Corollary 4 Consider a tree T(A,C, E,G). If it is non representing the null vector it can only be of the
type T1(A,0, E,0) or T:(0,C,0,G). Moreover, the tree T1(A,0, E,0) is uniquely determined by the highs of
the trees A and E and the tree T:(0,C, 0, Q) is uniquely determined by the highs of the trees C' and G.

Proof. In all other cases the trees have subtrees representing the null vector so the trees themselves are
representing the null vector. In fact consider T = T7(A4,C, E, Q). If G # 0, A # 0 the tree represents the null
vector for any C and E. For G # 0, A = 0 the tree represents the null vector if E is non trivial because it
has the tree {2} as subtree at level at least 1. The same happen if G = 0 and A # 0 meaning that if C' is non
trivial, the tree {2} is a subtree at level at least 1 of the initial tree which then represents the null vector.
If G =0,A = 0 then the tree is trivial if C' # 0 and E # 0 because 73(0,C, E,0) (containing the tree {2}
at level 1) is representing the null vector. It then remains 77(0,0, E,0), 7;(0,C,0,0) and 77(0,0,0,0). So
all the trees 77 (A4, C, E, @) which are not representing the null vector are of the type 77(4,0, F,0) (with no
condition on A and FE) or 71(0,C,0,G) (with no condition on C and G). The second part of the corollary
also uses that the trees 771(A4,0, F,0) and 7;(0, C, 0, G) must not have subtrees representing the null vector.
For 7;(A,0, E,0), the tree A, if it is not the exceptional tree or the tree {}, can also just have one tree at
the level one and this tree must be at the right side and all other levels are fixed in a same way. So A is of

type

We get E by similar reasoning. The case 7;(0,C, 0, G) can be treated in the same way.

Theorem 5 Any element of C/';_/l/Cp_l s a linear combination of the coding vectors:
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1. p=4k.
v ={113355--- (p—=3)(p —3)(p — 1) },v2 = {13355--- (p— 1)(p — 1)},
v5 ={117799- - (p+1)(p+ 1)(p + 3)}, ve = {11399--- (p + 3)(p + 3)},
vy = {1133(11)(11) - (p+ 3)(p+3)(p+ 5)}, -+,
ve o ={1133--- (5 =3)(5 -3)(5 - D+ D+ -+ 5-Dp+5 -1},
their symmetrics,
vp 3 ={1133- - (5 -1(E-Dp+3)p+3)(p+5)@+5 -+ 5+ 1}
v3 = s(v1),vs = $(v2), vz 44 = s(vs), -+, Vpt1 = S(VE 42)
2. p=4k +2.
v ={1133--- (p = 3)(p - 3)(p - )} vy ={133---(p—1)(p— 1)},
vs = {117799--- (p+ 1)(p+ 1)(p+ 3)},ve = {11399 - - (p+3)(p+3)}
vepio={1133--- (5 —=2)(§ —2)(p+ D(p+1)---(p+ 5§ -2)(p+ 5§ —2), ( + 5}
their symmetrics,
vz ={1133--- (5§ —=2)(§ —2)(5)(p+3)(p +3)(p+5)(p+5)---(p+ §)(p+ H)}
vy = 5(v1),v4 = $(v2), vz 44 = 5(5), + ,Vpy1 = S(vz42)
8. p=4k+1

vy = {1133---(p
vy = {1177 (p
Upgs = {1133---(
their symmetrics.

2)(p—2)},v2 ={13355---(p — 2)(p — 2)p},
2)(p+2)}, v = {11399 (p+2)(p+2)(p+4)},-
DD (EE)(EE) 0+ 2)(p+2)(p+4)(p+4) - ( e )+ 5

@-I-I

p+5 )

vy = s(v1),v4 = s(v2),va+7 =5(vs), -+ ,Vpy1 = s(v :

4. p=4k+3
vr = {1133+ (p = 2)(p — 2)},v2 = {13355 -- (p — 2)(p — 2)p},
vs = {1177 (p+ 2)(p+ 2)},v6 = {11399 - - (p+ 2)(p + 2)(p + 4) },
vege = {1133+ (B2)(B52) 2 (0 + 2)(p + 2)(p+4) (p +4) -+~ (0 + 232 (0 + 257 (0 + 257 1,
their symmetrics.

5)

vy = s(v1),v4 = s(vg),va” =5(vs), +* ,Upy1 = s(vp;

Consider Zy, ; the left zigzag tree of high [ and Zg; the right zigzag tree of high [ i.e

WMW\V%

%% %ﬁv

AR VAR ZR,2s Zr1,26+1
Then the trees corresponding to the vectors of the theorem are

AN ZR, Rl Zr

W\V\VW
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withl =p—1 and

Zr, Zr,

N4

withl; +lo+3=p, 1 <1l < f%] (where [x] denotes the ceiling function) and the symmetric of these
trees (except for the last one when p is even)

Examples. If 2p+1 =9, then p = 4 and the generating coding vectors are {113}, {133}, s({113}), s({133})
and {117} corresponding respectively to the trees

NN

If 2p+1 = 11, then p = 5 and the generating coding vectors are {1133}, {1335}, s({1133}), s({1335}), {1177}]
and s({1177}). corresponding respectively to the trees

XY ¥ Gy

If 2p+1 = 13, then p = 6 and the generating coding vectors are {11335}, {13355}, s({11335}), s({13355}),
{11779}, {11399} and s({11779}) corresponding respectively to the trees

R R R AR

Finally, if 2p +1 = 15, p = 7 the generating coding vectors are {113355}, {133557}, s({113355}),
s({133557}), {117799}, {11399(11)}, s({117799}) and s({11399(11)}) corresponding respectively to the trees

¥yt aw
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Let’s notice that these families of the generators are the bases defined in Proposition 6.

Proof. By Lemma 2, any tree in Tg,11 is a linear combination of trees which does not have the tree {2}
as a subtree, that is without central branches. So, we are going to find a system of generators with trees
grafted to the level 2 on the trees {1}, {3} and {15} by following the rules of Lemma 2, Proposition 4, its
consequence and Proposition 5. This means that we consider, because of Lemma 2, trees of type

T, Ty T, T

and 71(A4,C, E,G). Let us consider a tree with {1} at the bottom. To obtain a tree in 73,41 we will graft
a tree at a level at least 2. There are only two ways to do it, which correspond to the two first trees of the
theorem. In fact, we can not graft two non trivial trees at the level 2 because we would get a tree with {115}
as a subtree, so representing the null vector. So we can graft only one tree on the left or on the right at
level 2 (i.e. Ty or T is the trivial tree) and in both cases there is only one possible tree to obtain a tree in
Top+1 which is not representing the null vector (7o = Zy, 2 and Th =0 or Th = Zg p—2 and To = 0). The
case of a tree with {3} at the bottom can be treated in a similar way. Thus it only remains to examine the
trees with {15} at the bottom. By Proposition 5 and its corollary, these trees are the trees 77(A4,0, E,0)
with high h(A) of A, less than p— 3 and 77 (0, C, 0, G) with high h(C), of C less than p — 3. But if h(A) =0,
then the tree 77 (4,0, E,0) = 7:(0,0, E, 0) is, up to the sign, a tree with {3} at the bottom and if h(C) =0
the tree 71(0,C,0,G) = 7:(0,0,0,G) is, up to the sign, a tree with {1} at the bottom. Moreover h(A) > 0,
T:1(A,0,E,0) = —77(0,C",0,G") = —s(T1(A’,0, E’,0)) with h(C') > 0 and h(A") =p —2 — h(A) + 1. Then
instead of considering the trees 7;(A,0, E,0) with non trivial A, we can take the trees presented in the
theorem which where chosen for symmetries reasons.

Corollary 6 For any p > 3, dim L?*1(V) < (p + 1)(dim V)?**L. If 3 < p < 7 then dim L?*TH(V) =
(p+ 1)(dim V)2P+1,

We denote by Gap11 the generating family of vectors of C/';_/l /Cp—1 defined in Theorem 5.

Theorem 7 Assume that, for every p, every vector v of Gopy1 is non zero. Then

dim LT (V) = (p + 1)(dim V)P *1.

Proof. To each coding vector v € Gap11 we assign the tree ¢, € Top11. We count the leaves of ¢, from left
to right. If ¢ and ¢’ are two trees of 7ok, 41 and Top, 11 we denote t o; t' the tree of T4, 44,)+1 obtained by
grafting the tree ¢’ at the leaf i of t. Let Zf;l a;t,, = 0 be a linear combination of the trees t,,, v; € Gopy1.
Let u be the tree of 73. By grafting u twice in adapted places, we will prove successively that all the a; are
zero. Consider the trees t,, o; u. From Corollary 3, all these trees are representing the null vector except
of t,, o1 u and t,, o; u. Thus the equality Zf:ll a;t,, = 0 implies agt,, o1 u + ast,, 01 v = 0. If we then
graft u at the highest left leaf of ¢,, o; u and ,, o1 u, exactly one of the two obtained trees of 75(,12)41 is
zero, the other one is by hypothesis non zero so its corresponding coefficient is zero. Thus coming back to
agty, 01 U+ agty,, o1 u =0 we get that az = a4 = 0. For symmetric reasons the coeflicients corresponding to
the symmetric of these trees, that is, t,, and ¢,, are zero. Then Zfisl a;t,, = 0 concerns only trees of type

i

T1(A,0, E,0) with non trivial A and of type 7;(0,C,0,G) with non trivial G. By grafting v at the highest
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level the equality Zf:; a;ty, = 0 is reduced to a linear combination of two trees associated to vectors of

Gap+3. We repeat this process to Zf:; a;t,; = 0. Grafting u at the correct place, Zf:; a;ty, = 0 is reduced

to only to two terms. With a new grafting the corresponding linear combination is reduced to one term and
its coefficient is zero. This implies that the second coefficient of the linear combination containing two terms
are zero. Repeating this process we prove that all the coefficients are zero. So all the a; are zero and the
vectors of Gopy1 are independent and Gyt defines a basis of C/'p\_/l/Cp_l.

Corollary 8 If there exists p such that va € Gopy1 15 zero, then L?*+1 =0 for some k > p.

Proof. In fact v, is a subtree of any tree of L2**1 for some k greater than p.

Remark. Recall that for any vector space V, the associated tensor algebra T(V') is the unique solution,
up to isomorphism, of the universal problem which determine from a linear application f : V — A in an
associative algebra A, a morphism of associative algebra T'(V) — A. The construction of this algebra comes
from the isomorphisms

By 2 TN (V) @ T (V) — TEOHM(V)

defined by
(21 @22@ - Q) @Y Y2 QUYm)) =T1RT2@ Ty DY QY2 @ -+ @ Y-
In fact the multiplication p of T'(V') is given by

Pz @z @xp) @1 QY2 QUYm)) = P (21 @22 ®20) @ (N1 QY2+ @ Ym))

and the associativity of the multiplication follows from
Drtmp ® (Prm @Idy) = Prymp e (Idy @ Pryyp).

We can define another isomorphism no longer adapted to the associative structure but adapted to the n-ary
structure. For this we consider the family of vectorial isomorphisms

\Ifn,mp : T®”(V) ® T®m(V) ® T®p(v) N T®n+m+p(v)

satisfying

{ Vi mtptar ® Ldn @ U p g ®@1dr) = =2V pipigr ® ([dnim @ Yy qr)
= =2V mtptgr ® (Ynmp ® Idgir).

1.4 Consequences

1.4.1 On solvability of ternary partially associative algebras

Definition 9 Let (A,p) be a ternary partially associative algebra. We denote by D°(A) = A, D'(A) =
w(A, A, A) and more generally DPT(A) = u(DP(A), DP(A), DP(A)). We say that (A, ) is solvable if there
is an integer p such that DP(A) = {0} .

Theorem 10 The free partially associative algebra L(V,-) is solvable.

Proof. Studying L7(V), we have seen that {147} = 0. This means that for any vector v,--- ,ve in V,
(v1-v9 -v3) - (Vg -v5 - vg) - (V7 -vg - v9) = 0. Thus D*(L(V,-)) = 0 and L(V,-) is solvable.

Corollary 11 Any ternary partially associative algebra is solvable.
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1.4.2 Commutative ternary partially associative algebras

A ternary partially associative algebras is commutative if (1, v2, 23) = (1), Xo(2); Xo(3)) for any per-
mutation o.

Theorem 12 Let A(V) be the free commutative ternary partially associative algebra on the vector space V.
Thus A%(V) = 0.

Proof. We have A(V) = @enA* (V). We have A (V) = V and A%(V) is of dimension C52 = w
since the commutativity implies x1 - ¥2 - T3 = T5(1) - To(2) - To(3) for any o € 33 so we get a basis of A3(V)
considering e;, ® e;, ® e;, with i1 < iy < i3, i1,49,i3 € [[1,---,n]]. Clearly A2**1(V) c L2*+1(V). The
generators of LY(V) follows from the coding vectors 113,133,117, 355 = s(113), 335 = s(133). Consider the
vector 113. Tt corresponds to a product ((z1 - @2 - (3 - x4 x5)) - T - T7) - s - Tg. The commutativity implies
that this product is equal to (((z3 - x4 -x5) - 21 - T2) - e - T7) - g - Tg Which corresponds to the coding vector
111. But 111 = 0. Thus 113 = 0. Likewise we have 133 = 111 = 0. By symmetry 355 = 335 = 0. We have
also 117 = 144 = 0. Thus any commutative product on 9 elements is trivial.

Corollary. Let A be a commutative ternary partially associative algebra. Consider the following sequence
CU(A) = A,CP(A) = ®itjihep-1, i>j>ki(CI(A),CI(A),C*(A)). Then C*¥(A) = 0 for any k > 4.

1.4.3 The operad 0 of 3-ary partially associative algebras

(From Proposition 2, we can deduce the following result (see also [43] and [51])
Theorem 13 The operad O of 3-ary partially associative algebras is not Koszul.

Proof. Recall that the quadratic operad 9 is a sequence (9(2k +1))xen of vector spaces where any 0(2k +1)
is also provided with a structure of Yo 1-module, where ¥, is the symmetric group of degree n. Moreover,
the Y3-module 9(3) is isomorphic with the group algebra K[X3], and the ¥5-module 9(5) is the quotient space
of tree copies of K[X5] by the operadic ideal defined by the relation of partial associativity. The previous
calculus show that

dim(9(3)) = dimK[S3] = 6, dim(9(5)) = 2 x dimK[S5] = 240

and more generally

for k = 3,4,5,6,7. By definition, the generating function of an operad P is
1 a
gp(r) = 3 Tx(P(a)),
a>1
where 4
X(P(a) := Y (=1)" dim(P;(a)).

(see [45]). If a quadratic operad P is Koszul, then its generating function and the generating function of its
dual P' are tied by the functional equation ([45])

gp(—gp(—x)) = 2. (L.5)
The generating function of J is then written
go(z) = x4+ 23 + 22° + 42" 4 52° 4+ 62! + 72" + 8210 4 - -

Let s be a formal power series satisfying
go(=s(=x)) = x.
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We find
s(z) =z — 2% + 2° — 192 + O[z]"2.

But the dual operad of 9 is the operad t.Ass$, of totally associative algebras with generating ternary operation
of degree 1 (see [43]) and its generating series is
gt.Ass“;’ (ZL’) =T — xS + (L’5.

So 0 cannot be a Koszul operad.

1.5 Cohomology and deformations of (2k + 1)-ary partially asso-
ciative algebras

1.5.1 Cohomology of deformations

Let (V, po) be an n-ary partially associative algebra and p(t) = po + ZiZl ti¢; a formal deformation of uq
(see [19] and [13] for the terminology). As u(t) is a n-ary partially associative algebra product, the n-linear
map ¢; satisfies the following linear identity:

Mo © (Z I, @1 @ In_p-1) + 10 (Z Iy @ po @ In—p—1) = 0, (1.6)
p=0 p=0

where I}, is the identity map on (V)®* and Iy ® f = f® Iy = f for any n-linear map f. By [42] there exists a
complex (C*,9*) such that (1.6) corresponds to 9?(¢;) = 0. This cohomology which governs deformations is
called the cohomology of deformations. When the corresponding quadratic operad is Koszul, this cohomology
coincides with the natural cohomology defined by the operad (operadic cohomology, for definition see [45]).
But if pg is the product of a 3-ary partially associative algebra, Theorem 13 implies that the corresponding
operad is not Koszul. It follows that the two cohomologies are different.

Remarks

1. If n is even, the operad pAssj for n-ary partially associative algebras is Koszul and the cohomology
of deformations coincides with the operadic cohomology. This cohomology is described in [17]. But in
[17], the author doesn’t distinguish the odd and even cases and the results concerning the odd case are
not correct (see also [51]).

2. In [43], we develop a general approach to deformations of algebras over non Koszul operads. In
particular we define the notion of dual operads for n-ary algebras. Earlier, this notion was given in
[17] but it was wrong. Our definition is given in terms of multiplication with non trivial degree.

1.5.2 n-ary-product of degree d

Let C*(V) be the linear space of k-linear maps of V. For any f € C"(V) and g € C™(V) the Gerstenhaber
product f e, ., g is

n
fonmg= Z(_l)(ifl)(mfl)‘f 0 g
=1
with
(foig)(X1® @ Xnym-1)=f(X1® - @g(Xi® - Xipm-1) @+ @ Xnim-1)-

The product o; is the comp-i operations of Gerstenhaber.

Definition 14 An n-ary product u is of degree d if we have for 1 < j <n,
(=) (sos 1) 0jnr p if 1<i<j—1,
(pojp)osp= Mjo(/;oi—j—i-l,u) if j<i<n+j-—1,
(=) (pojmng1 p)ojp if i > j+mn.
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Examples.

1. Degree 0 partially associative 2-ary algebras are classical associative algebras.

2. If n =2, d =1 and p associative, then p satisfies

Ko = o2 [,

(o1 p) o1 = por (por ),

(o1 p) oo p=por (poap),

(po1p)og p=—(1oz p)orp,

(o2 1) o2 o= oz (Lo p),

(02 p1) 03 = 1oz (ko2 p).
3. If n=3,d=1 and if u is totally associative, we have

[LO1 J= L 02 [1 = [103 |,

and
(po1p)os p=—(poz p)orp,
(po1 p) o5 = —(p o3 p) o1 i,
(o2 ) o5 = —(p o3 p) oz .

1.5.3 A cohomology for 2k + 1-ary partially associative algebras with operation
in degree 1

In what follows, we denote by e any Gerstenhaber product e, ,.

Lemma 3 (Graded pre-Lie identity)
Let o1 € C™(V), w2 € C™(V) and p3 € CP(V), and let |p1|, |p2], w3| be respective degrees of ¢1,pa, ©3.
Then
(P10 02) @03 — p1 @ (02 0 p3) = (—1) MDD (—1)le2ll28l((0) @ p3) @ 0 — 1 @ (103 @ p2)).

(From this lemma we directly deduce, considering s = p3 = p and using that ye yu=0:

Proposition 6 Let (V,u) be a (2k + 1)-ary partially associative algebra with a multiplication p of degree 1.
Then, for any ¢ € CK(V') we have (¢ o j1) @ 1 = 0.

Let
§:C™(V) — C 2R (V)
be the 1 degree operation defined by

Sp=pep—(—1)lpep (1.7)
where |¢| is the degree of . The graded pre-Lie identity gives

(nop)op—pe(nep)=(—1)((nep)en—je(pepn)).

This implies
(o) =0

The complex

(C2k+1 (V), 5)k21

gives the operadic cohomology. In fact, it was proved in [43], that the quadratic operad associated with n-ary
partially associative multiplication of degree 1 is Koszul. When n is even and the multiplication of degree 0,
this complex also corresponds to the operadic cohomology. But this is false if n is odd and the multiplication
of degree 0. In the following section we construct a complex whose coboundary operators satisfy identities
similar to the identity (1.7).
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1.5.4 A complex associated to a product of (2k + 1)-ary partially associative
algebra in degree 0
In this section, we assume that p is of degree 0.
Lemma 4 Let y1 be an n-ary partially associative product on a vector space V and ¢ € CF(V).
1) If n is even, then (p o u) e u=0.

2) If n is odd, then
(pomop= > (popm)ogp. (1.8)

1<p<g—n<k-1

where o; is the comp-i operation.
Proof. We have the pre-Lie identity ([15]):

((P O n /J/) ®itn—1n U — PO 2on—1 (,u/ ®n.n /J) = (_1)(n—1)2 [(‘P ®Ln ,U/> ®pin—1n MU — PO 2n—1 (M ®n,n M)]

As p e, , =0, the previous equation reduces to

2
(0 Ok 1) Oktn—tn b= (1) (@ @4y 1) Ok, .

If n is even, it implies that (¢ e, 1) ®k+n—1,n ¢ = 0 and this case is similar to the above section. But if n
is odd, the previous identity is trivial. Computing directly (¢ o, 1) ®ktn—1n i, We obtain identity (1.8) of
Lemma 4.

Assume that n is odd. Lemma 4 shows that (52’”1 06k # 0. To define a cohomology in this case, we restrict
the spaces of cochains. Let x*(V') be the subspace of C¥(V) given by

X'(V)={peC’V),(pep)en=(nep)ep=pe(pen) =0}.
Pre-Lie identity applied to the triple (u, ¢, u) implies
(Hop)op=pe(pepu)—je(ueyp),
and if ¢ € x*(V) we have also e (11 e ) = 0.
Proposition 7 Let 0% : x*(V) — ot~ L(V) be the linear map defined by
Fo=(-1)f"pep—pep

Then Im(9%) C x**"=1(V) and
6k+n—1 o 8k = 0.

For any 1,

OFITV), 68 )0

is a complex, where §] = 9+i(n=1),
Proof. Let ¢ be in x*(V). Let us prove that 0%¢ € x**"~1(V). We have

(@ pop)op= (=1 ((nep)ou)ep—((popu) eu)eu=0,

(nod*p)ep=(—1)F"(ne(uep)eu—(ne(pop)eu=0,
and
pe(@pepn)=(-1)"pe((nep)epu)— e ((peu)epu) =0.
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Thus 0% € x**+"=1(V). But

@Mt od®)p =M (=) uep —pep)
=pe(pep)+ (=1 e (pepn)+(-1)*(uey)epu+(pou) eu=0,

SO
8k+n—1 o ak —0.

Remark: Graded n-ary algebras and n-ary super-algebras. We have just studied n-ary algebras with
multiplications with a non trivial degree. It is also easy to define a notion of graded n-ary algebra. Let I’
be an abelian group. If V = ®,crV, is a I'-graded vector space and if ;1 is a n-ary multiplication on V', the
n-ary algebra (V, p1) is a graded n-ary algebra if

PVars s Vo) © Varggo,

for any v1, -+ ,y, € I'. If I' = Z3, such a graded algebra will be called super algebra.

1.6 Extension of the notion of coassociative algebras for n-ary
algebras

If n = 2, then n-ary partially associative algebras are just associative algebras and we can define coasso-
ciative coalgebras with the well-known relations between these two structures. In fact, the dual space of a
coassociative algebra can be provided with a structure of associative algebra, the dual space of a finite di-
mensional associative algebra can be provided with a structure of coassociative coalgebra structure and also.
In addition, if (A4, p) is an associative algebra and (M, A) a coassociative coalgebra, the space Hom(M, A)
can be provided with an associative algebra structure. All these notions can be extended to n-ary algebras.

An n-ary partially associative algebra has a product p satisfying:

n—1

S ()P Do (I, @ p© Iy ) = 0.

p=0

We can give the following definition of partially coassociative n-ary coalgebra.

Definition 15 An n-ary comultiplication on a K-vector space M is a map
A:M— MO,

An n-ary partially coassociative coalgebra is a K-vector space M provided with an n-ary comultiplication A
satisfying

n—1

S, © A L1y 0 A=0.

p=0
An n-ary totally coassociative coalgebra is a K-vector space M provided with an n-ary comultiplication A
satisfying

Iy AR _1_p)o A= (A®I,_1)0A,

for anyp € {0,--- ,n—1}.

If (A, u) is an n-ary algebra and (M, A) an n-ary coalgebra we set

n—1

A(p) = X (1P Do (I, © p® L1oy),

p=0

n—1
AQ) = Y (1P D1, © A® I-1-p) 0 A
p=0
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Then an n-ary algebra (A, u1) is partially associative if and only if A(u) = 0, and an n-ary coalgebra (M, A)
is partially coassociative if and only if A(A) = 0.

For any natural number k and any K-vector spaces E and F', we denote by
e : Hom(E, F)®% — Hom/(E®*, F®F)
the natural embedding

A(fi® .. ® fi) (@1 ® .. @ap) = fi(z1) ® ... ® fulzk).

Proposition 8 The dual space of an n-ary partially coassociative coalgebra is provided with a structure of
n-ary partially associative algebra.

Proof. Let (M, A) be an n-ary partially coassociative coalgebra. We consider the multiplication on the dual
vector space M* of M defined by
w=A%"0o\,.

It provides M* with an n-ary partially associative algebra structure. In fact we have
pfr@f@ @ fn) =pxoA(fi® f2® @ fa) o A (1.9)

for all f1,---, fn, € M*, where ug is the multiplication in K. Equation (1.9) becomes

po(lp@u@I—1-p)(f1® f2® - @ fon-1)
=px 0 (An(f1® & fp @ pu(fp41 @+ ® fpin) ® fpin1 ® -+ @ fan—1)) 0 A

:MKO/\n(fl®"'®fp®(MKO/\n(fp+1®"'®fp+n)oA)®fp+n+1®"'®f2n—1)oA

=pg o (L, @ pux @ In1-p)odopn 1(fi® @ fon1)o ([, ®A®@ 1) 0 A.
Using associativity and commutativity of the multiplication in K, we obtain
\le € {Oa e, N 1}7 MK © (Ip Q pKr ® In—l—p) = MK © (MK b2 In—1)7
SO
n—1
Z (_1)17(7’7171)# e} (Ip ® l,L ® Inflfp)

p=0

n—1
= pix o (g @ In—1) 0 Aan—1(1 @+ @ fan—1) 0o 3 (=1)PO "N, @ AR I,_1-p) 0 A =0
p=0
and (M*, p) is an n-ary partially associative algebra. O

Proposition 9 The dual vector space of a finite dimensional n-ary partially associative algebra has an n-ary
partially coassociative coalgebra structure.

Proof. Let A be a finite dimensional n-ary partially associative algebra and let {e;};=1,... n be a basis of A.
If {f;} is the dual basis, then {f;, ® --- ® f;, } is a basis of (A*)®". We define a coproduct A on A* by

A(f) = 4 Z flules, @ ®@e,))fiy ® - ® fi,.

In particular

A(fx) = Z Ch . i fu® @ fi,
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where Cfl i, are the structure constants of p related to the basis {e;}. Then A is a comultiplication of an
n-ary partially coassociative coalgebra. []

Now we study the convolution product. Let us recall that if (A, ) is an associative K-algebra and (M, A)
a coassociative K-coalgebra then the convolution product

frxg=pol(f®@g)oA

provides Hom(M, A) with an associative algebra structure. This result can be extended to the n-ary partially
associative algebras and partially coassociative coalgebras.

Proposition 10 Let (A, u) be an n-ary partially associative algebra and (M, A) an n-ary totally coalgebra.
Then the algebra (Hom(M, A),*) is an n-ary partially associative algebra, where x is the convolution product:

fl*f2*"'*fn:ﬂo)\n(f1®f2®"'®fn)oA~
Proof. Let us compute the convolution product of functions of Hom (M, A). For any i = 1,--- ,n we have

Jixeox ficax (fix figr %% firn—1) % fign * - % fan_1
=p oXM([i®fo@ @ f[ic1 @ (fix * fign-1)® fiyn @@ fn) 0 A

=poX(fi® - fic1@Wor(fi ® ® fitn-1)0A)® fitn ® fon—1) 0 A

=po (Li1®p®Li—i)o A1 (fi® 2 ® @ fon—1) o (Lim1 @A ® I,,—;) o Al
Since A is an n-ary totally associative product, we have

AR (1 ® @ fon-)

= Z (_1)p(n71)“ © (Ip Y H & In—l—p) o )\Qn—l(fl QR f2n—1) © (Ip & A @ In—l—p) oA
p=0

n—1
= ()P Yo (L, @u®ILi—1-p) | o Aen—1(/i® & fan_1) 0 (A®I,_1) 0 A =0,
p=0

which proves the result.



Chapter 2

The n-ary algebra of tensors and of
hypercubic matrices

We define a ternary product and more generally a (2k + 1)-ary product on the vector space TP(E) of tensors
of type (p, ¢) that is contravariant of order p and covariant of order ¢ and total order (p+ ¢). This product is
totally associative up to a permutation s of order k (we call this property a si-totally associativity). When
p =2 and ¢ = 1, we obtain a (2k + 1)-ary product on the space of bilinear maps on E with values on E,
which is identified to the cubic matrices. If we call a [-matrix a square tableau with [ x --- x [ entrances
(if { = 3 we have the cubic matrices and we speak about hypercubic matrices as soon as [ > 3), then the
(2k + 1)-ary product on TP(E) gives a (2k + 1)-product on the space of (p + ¢)-matrices. We describe also
all these products which are si-totally associative. We compute the corresponding quadratic operads and
their dual.

2.1 On n-ary associative algebras

2.1.1 Recall: n-ary partially and totally associative algebras

A n-ary algebra is a pair (V, ) where V is a vector space on a commutative field K of characteristic 0 and
1 a linear map

p:vVer v
where V®" denotes the n-tensor product V& ---® V (n times).

A n-ary algebra is partially associative if p satisfies

n—1

N (1P Vo (1, @ p© Lypr) =0, (2.1)

p=0
for any p=0,---,n — 1, where I; : V¥ — V®J is the identity map and Iy ® u = u ® Iy = p. For example,
if n = 2 we have the classical notion of binary associative algebra.

A n-ary algebra is totally associative if u satisfies

po(p®In1)=po (L, ®p®Inp1), (2:2)

for all p =0,--- ,n — 1. For n = 2, the two notions of partially and totally associativity coincide with the
classical notion of associativity. A totally associative (2p)-ary algebra is partially associative. A totally
associative (2p + 1)-ary algebra is partially associative if and only if u is 2-step nilpotent (i.e. po; u =0 for
any i =1,--- ;nwith po;u=po(l_1 @u®Il,_;)) .

23
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2.1.2 Definition of n-ary o-partially and o-totally associative algebras

We can generalize Identities (2.1) and (2.2) using actions of the symmetric group on n elements ¥,,. This
generalization is in the spirite of the binary K[33]-associative algebras introduced and developped in [23]
and [53].

Definition 16 For a permutation o in %, define a linear map
@X T VACH Ve
by
OY(e;, @---®e;) = €iyryy @ D€y -
A n-ary algebra (V, 1) is o-partially associative if

n—1

S ()PP o (I, © (110 BY) @ Typ1) = 0, (2.3)
p=0

forallp=20,--- ,n—1,

and o-totally associative if

o (p®In-1) :NO(IP(X)(NO@XP)@In—p—l)v (2.4)
forallp=0,--- ,n—1.
Example If n = 3 and o = 7y is the transposition exchanging 1 and 2 then a 7-totally associative algebra

satisfies
,u(,u(el, €2, 63)3 €4, 65) = M(ela ,U/(eg, €2, 64)7 65) = ,LL(€17 62(/1/(637 €4, 65))7

and a Tyo-partially associative algebra satisfies

:u’(:u(617627 63)7647 65) - u(ela ,U(€37 €2, 64)7 65) + u(ela 62(/"(637 €4, 65)) =0.

2.2 A (2p+ 1)-ary product on the vector space of tensors TZ(E)

2.2.1 The tensor space TZ(F)

Let E be a finite dimensional vector space over a field K of characteristic 0. We denote by T?(F) = EQ EQ E*
the space of tensors covariant of degree 1 and contravaviant of degree 2. The space TZ(FE) is identified to the

space of linear maps
LIEQE,E)={p: E® E — F linear}.

Let {e1,---,e,} be a fixed basis of E. The structure constants {CJ;} of ¢ € TZ(E) are defined by
n
ple; ®ej) = Zijek.
k=1

Definition 17 The dual map of ¢ € TZ(E) is the tensor ¢ € Ta(E) ~ L(E,E ® E) defined by

p: E — E®FE
e Z C’fjeié@ej.

1<ij<n

If o is considered as a multiplication on E, then ¢ is a coproduct. For example, if ¢ is an associative product
then @ is the corresponding coassociative coproduct (often denoted by A).
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2.2.2 Definition of a 3-ary product on T?(E)
Let ¢1, @2, 03 be in TZ(E). We define a 3-ary product u by

({1, P2, P3) = 10 P2 0 3. (2.5)
As @3 : E — E®E, then @10 @303 € TE(E) and p is well defined. Let us compute its stucture constants.
We denote by C’ikj(l) the structure constants of ¢; (I =1,2,3).

(e, 2, 03)(€; @ej) = 10 @E o p3(e; @ ey)

Z 3)¢1 0 pa(er)
= Z Z 3)Cr (2) 1 (e @ em)

k=1 1<l,m<n

Thus if (1, 2, 3)(e; ® e;) ZA 1,2,3)e; we get

1<k, l,m<n
Proposition 11 The 3-ary product in T2(E) given by

(1, P2, 93) = @10 P2 © 3

satisfies
(p(p1, 02, 03), 1, 05) = (@1, 11(Pa; 3, 92), Ps)
= p(p1, 2, 1(ps; a, s)),

that is this product is T13-totally associative.
Proof. We have

w1, P2, 93), pa, p5)(€i @ ;) = (910920 p3) 0Py 0 ps(e; ®ej)

=> | D CEG)CE (M)A}, (1,2,3) ] e

t k,l,m

—Z 33 (CE(B)CE, (4)CE, (B)CL(2)CL (1) | e

k,l,m u,r,s

Thus the structure constant Af;((1,2,3),4,5) of this tensor is

AL((1,2,3),4,5) = Y CE(B)CE,(4)CH, (3)CH(2)CL(1).
k,l,m
< <n
u,r,s
Similary

(e, o2, (@3, 01, 05))(ei @ e;) =10 pa0 (P30 pa0ps)(e; D ey)

= Z [ZA“ (3,4,5)C" (2 )cﬁsu)] e

u,r,8

=S 13 Y cke)ct,@ck.6) | chechm)] .

u,r,s \ k,l,m
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Thus
AL(1,2,(3,4,5) = Y CEB)CE,(4)CH, (3)Cr (2)CL (1),
k,l,m
u,r,s
and

AL(1,2,(3,4,5)) = AL((1,2,3),4,5).

We also have

p(e1, ez, 03, 04),p5)(ei @ ej) = @10 (p20p30p4) 0 ps(e; @ ej)

=> | D CE(5)AL(2,3,4)C, (1) | e

t k,l,m
=22 | 2 S OB MBI RICH D) | <
k,l,mu,r,s

and
AL(1,(2,3,4),5) = Y CE(5)CH,(A)C(3)CE(2)CH, (1).
k,l,m
u,r,s

This shows that
t —
Aij((la 27 3)7 47 5) - Alz?j(]-v (4a 3’ 2)7 5)

Remarks.

1. We can define in this way other non equivalent products by:

p2(p1,2,38) = P30 P20 01,
p3(1, @2, 03) = p1opa 0 s,
1a(p1, 92, 03) = p3 0@ 0 Y1,

where ‘p(e; ® €;) = p(e; ® €;).
2. If we identify a tensor ¢ to its structure constants {C’Z} and if we consider the family {C’Z} as a cubic

matrix {Cyjx} with 3-entries, the product u on TZ(E) gives a 3-ary product on the cubic matrices. This last
product has been studied in [1].

2.2.3 A (2k+ 1)-ary product on T?(E)
Let 1, -+ ,@ars1 be in T2(E). We define a (2k + 1)-ary product posyq on TZ(E) putting
Mokt 1(P1,++  P2k41) = P10 P20+ 0 Pag_1 O Pog O Pagy1-
Let si be the permutation of 9541 defined by
si(1,2,--+ 2k +1) = (2k + 1,2k, -+, 2,1),

that is S = T1og41 0 Took 0+ - O Th—1 pt1 = Hfzingkﬂ,i. It satisfies (s5)?? = Id and (s)**! = s;, for any
p (it is a symmetry).

Recall that the (2k + 1)-ary product por41 is a sg-totally associative product if
pok+1 © (pokt1 ® o) = prok1 © (Ip ® (k41 © q)sgg) ® Iog—p),
for p=1,---,2k. In particular, we have

p2k+1 © (pok41 @ To) = pros1 © (J2g @ port1 ® Iap—2q),
forany ¢g=1,--- k.
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Proposition 12 The product popy1 is si-totally associative.
Proof. In fact if we put

port1(p1, - pary1)(e; @ ey) ZA < 2k + 1ey,

then Af;(1,2,---,2k+1) =
Y. CHk+ 108, (2K 02, 2k —1) - Ok, (2)C; (1).

a2k—102k a2k—10a2k

A1y, Qk+1
ki, kg

More precisely the line of superscripts is
(k1 ks kas koo Ky, kg, 1),
and the line of subscripts
((4,7), (a1, a2), (a1, az), (a3,a4), (az,as), - , (@2k—1, ax), (@2k—1, azs))-
Let us consider
paki1© (1 ® (a1 0 ®r) @ Lop 1) (o1, -+ panyr) (€ @ €5) = > Bley.
Thus for [ = 2r, we get
BY = Y CH(4k+1)Ch

aipa

(4K)CF2, (4 = 1) - Cakims Lame_on (2k + 1 +2)

Ki—r kk—r
Aa;k—;rl—laek—2r (l +1,-- ’2k +1+ 1)Ca§k—;l+1azk7w+2 (l) -Ct (1)7

A4k —104k

such that the line of superscripts is
(k13k13k27k2)"' kk—7'7h17h’17"' hkahkakk—7'+17kk—7'+17'" akk‘7kkat)7

where the terms hy,--- , hg, kg—r+1 correspond to the factor Aa’;k T ase (U1, 2k + 1+ 1). Such a
line is the same as the hne of superscripts of
H2k+1 © (B2k+1 @ Log) (1, part1)(e; @ ;).

The line of subscripts is

((4,4), (a1,a2), (a1, az),- -+ , (@2p—27—1, G2k—2r), (G2k—2r 1, A2k—2), (B1B2), -, (Bar—1, Bor),

(a2k—2’r—17 a’2k§—2’l‘)7 R (a‘4k7—17 a4k§))'
So

ti2k+1 © ((H2r+1 ® Ton) = pioks1 © (I ® (p2rgr © Pt ) @ Tok—i),

for I = 2r. Assume now that [ = 2r + 1. In this case Bj; is of the form

SOk (kL 2) AR (2k+ 141, 1+ )Cke URE

A2k —2r—1A2k—27 A2k —27r4+10A2k —2r42 A2k —27r4+10A2k —2r42
We find the same list of exponents and of indices that for psgy1 © (pak+1 ® Iox). This finishes the proof.
Consequences.

1. The product pogs1 on TE(E) induces directly a (2k + 1)-ary products on cubic matrices.

2. All the other products which are si-totally associative corresponds to

o1 (P15 P2kt1) = Pakt1 © Pak O - P2 0 P,
a1 (01, s art1) = paka(Per, 02, Part),
Hair (0157 5 Part1) = Bappq (@1, 5 02k, "Pory1)-

and more generally

/~L2k+1(t901»9027t ©3,° 5 P2k+1)
or

M2k+1(t9017¢2at P35 P2w+1)-
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2.3 Generalisation: a (2k + 1)-ary product on T?(F)

2.3.1 The vector space T?(E)

Let F be a finite m-dimensional K-vector space. The vector space T} (E) is the space of tensors which are

contravariant of degree p and covariant of degree ¢. In {ey,--- , e, } is a fixed basis of E, a tensor ¢ of TP (E)
is written _ _
t= ) e ® @, @ @k
1< ikajl <n
1<k<p
1<1<q
where (el, .- e™) is the dual basis of (e1,- -+, e,,). As

T7(E) = T§(BE) © T, (E),

q

then the tensor space

T(E)= Y TI(E)

p,q=0

is an associative algebra with product

, l
THE) < TL(E) — TPHL(E)

(K.L)  — KoL

But this product is not internal on each component 77 (E). In this section we will define internal (2p — 1)-
ary-product on the components.

The vector space TP (E) is isomorphic to the space L(E®?, E®?) of linear maps
t: B9 — E®°.
We define the structure constants by
te, @@ eip) — chgll.-:ig:ejl ® - Qej,.

For such a map we define ¢ by

t: E®’ — E®"
(e, @ ®ej,) = YOI e @ e,

2.3.2 A (2k+ 1)-ary product on T?(E)

Definition 18 The map u defined by:

(@1, P2k4+1) = P2k4+1 © Pak © Pak—10 -+ 0 P2 0 P1, (2.6)

for any @1, ,pap+1 € TE(E) is a (2k + 1)-ary product on T2 (E).

We take an odd number of map ¢; so we get compostions of p;110¢; : E®" — E®" for j =1,--- 2k — 1
and finally compose with o1 : E®" — E® g0 w is well defined.

Proposition 13 The (2k + 1)-ary product p on TP(E) defined by (2.6) is sg-totally associative.
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Proof. The proof is similar to the proof of Proposition 12 concerning an (2k + 1)-ary product on T2(E). In
fact we have

(o1, papr1)(e, @ @e;,) Z A er1 “®er,,
and

AP = o Jq(2k+1)031 J‘Z(zk)c”“ 2k = 1) Ol (D),

i1lp

that is the line of superscripts is

GreGg) (1 Ga)(ma - -mg)(my - -mg) -+ (n1 -+ ng)(ny - ng)(ry - 1),

and the line of subscripts is

Using the same arguments that in Proposition 12, changing pairs by p-uples and g-uples, we obtain the
announced result.

Remark. We can also use the same trick that in Consequences 2. to find others sg-totally associative
products on T7(E).

Applications. This product can be translated as a product of ”hypercubic matrices” that is square tableau
of length p + ¢. This generalizes in a natural way the classical associative product of matrices.

2.4 Current (2k + 1)-ary s;-totally associative algebras

The name refers to current Lie algebras which are Lie algebras of the form L ® A where L is a Lie algebra
and A is a associative commutative algebra, equipped with bracket

[z ®a,y@blroa = [z,y]r & ab.

We want to generalize this notion to (2k + 1)-ary sk-totally associative algebras. The problem is to find
a category of (2k 4 1)-ary algebras such that its tensor product with a (2k + 1)-ary si-totally associative
algebra gives a (2k + 1)-ary sg-totally associative algebra with obvious operation on the tensor product.
Such a tensor product will be called current (2k + 1)-ary si-totally associative algebra. We first focus on the
ternary case and s; = 713.

Let (V, ) be a 3-ary algebra where y is a 1y3-totally associative product on V (for example V = TZ(E)
and p is defined by (2.5) ) so p satisfies Equations (2.4) for o = 713, that is,

p(p(er, ea,es), eq,e5) = p(er, ples, e, e2), e5) = p(er, ea(p(es, es,es)),

for any eq,eq,e3 in V. Let (W, i) be a 3-ary algebra. Then the tensor algebra (V @ W,u® i) is a 3-ary
T13-totally associative algebra if and only if

(L ® ) (v @ w; @ vy ®wa ®vg @ ws) = p(vy, v, v3) ® fi(wr, wa, ws)
satisfies the 713-totally associativity relation. But

(e f)o(u®i®L)=po(u®h)®jio(i® ),
(pop)o(Lepep)od W @h)=po(I@uod) @ @ic(l®podl I),

T13 T13

(p@p)o(ls@pu® i) =po(l2®@pu) ®po(l2® f),
then (@ @) o (@A ® 1) — (p® i) o (Iy ®p® ) =0 is equivalent to

o(p®L)®po(A®lr) —po(la®@pu)®fio(la®f)=0. (2.7)
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But po(p® Iz) = po (Ix ®p). Thus Equation (2.7) is equivalent to
o (k@ L)@ [fio (i@ ) — fio (I © fi)] =0,
and
fio(B® D) = jio (I ® ).

Similary

(p@p)ouep®ly)—(pei)o(la®u® fi)

po(p®h)® [fo(i®l)—fo(I®jicdV ®I)] =0,
which leads to

fio(f®h)=fo(I®jodV &I).

So 1 ® fi is T13-totally associative if and only if f is 7 3-totally associative.

Proposition 14 Let (V,u) be a 3-ary Ti3-totally associative algebra and (W, ) be a 3-ary algebra. Then
(Ve W,u® i) is a 3-ary T13-totally associative algebra if and only if (W, i) is also of this type.

This result can be extended for (2k + 1)-ary si-totally associative algebras.

Proposition 15 Let (V,u) be a (2k + 1)-ary sk-totally associative algebra and (W, ) be a (2k + 1)-ary
algebra. Then (V@ W, u® fi) is a (2k + 1)-ary sg-totally associative algebra if and only if (W, i) is also of
this type.

Proof. The product u is a (2k 4+ 1)-ary sg-totally associative product so satisfies

po(p®lay) = po(ly®p® lp_2)
= po(lygt1@puo @ch ® Iak—2¢-1),

for any ¢ =0,--- , k. The system

(u®ﬁ)o((u®ﬁ)®l4k)—(u®ﬁ)o(I4q®(u®ﬁ)o<1>;/z®w®f4k_zq) =
MO(N®I2I€)®/70(/7®I2I€)_No(Iq®MO‘I)}%®12k—q)®/jto([q®/~ﬁoq)}%/®12k—q):07
for any ¢ =0,--- , k is equivalent to
po (p® o) ® [ﬁo(ﬁ@)f%)_ﬂo(Iq@’ﬁo‘bg‘{@bmq) =0,

for any ¢ =0,--- , k. Then u® fi is (2k 4+ 1)-ary sg-totally associative if and only if
fio (1 ® Iak) *IEO(Iq@ﬁoq)zg@I%—q) =0

for any ¢ =0,--- ,k that is f is a (2k + 1)-ary si-totally associative product.

2.5 The operads 0, 3-tot,  Ass

2.5.1 On the operad 0

We denote by 0 the quadratic operad of 3-ary -i.e. ternary- partially associative algebras (with operation
in degree 0). In [29] we compute the free 3-ary partially associative algebra based on a finite dimensional
vector space V. In [52] we notice that the dual operad is in general defined in the graded framework, compute
it, as the knowledge of the dual is fundamental to study if the operad is Kozsul or not. We prove in [52]
that 9 is not Koszul. Note that this result contradicts some affirmations of the Koszulity of the operad 0.
This confusion can be explained by observing the general case of the operad n-paAss for n-ary partially
associative algebras with operation of degree 0. If n is even ([17]), n-paAss is Koszul and the dual operad
n-paAss' is the operad n-totAss for n-ary totally associative algebras with operation of degree 0 (which is
also Koszul). But if n = 2k + 1, the operad n-paAss' is not n-tot.Ass but n-tot' Ass for totally associative
algebras with operation of degree 1 and this operad is not Koszul (see[52]). As a consequence we deduce that
for n odd, the operadic cohomology (which always exits) is not the cohomology which governs deformations
(which also always exits contrary to what is written in [3]). Remark that in [29] we have also defined a
cohomology of Hochschild type for 3-ary partially associative algebras with some extra conditions.
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2.5.2 The operad 3-tot, , Ass

We denote by 3-tot, ,Ass the quadratic operad for 3-ary 7j3-totally associative algebras that is satisfying
Relation (2.3) for ¢ = 73. Let p be a 3-ary multiplication, and

_f <p>~K[3s], ifm=3and
E3't0t713ASS(m) - { 0’ lf m # 3.
We simply say that Es-tot, , Ass = Es-tot Ass(3). The ideal of relation is generated by the K[X¥s5]-closure
Rs-tot,,, Ass of the T13-associativity

T13
{ r=ppl) —pl@p-131I),

ro = p(p @ Iz2) — p(lz @ p),

where p -0 = o ®, for o € X3.

If F(E?,—tot,lsAss) denotes the free operad generated by Es-tot, , Ass, we get that Ra-tot, , Ass C F(EB—totTmAss) (5)'
The operad for 3-ary m3-totally associative algebras is then the quadratic 3-ary operad

3't0t713A85 = F(E3-t0t713Ass)/(R3-totTl3Ass)7

that is 3-tot.,, Ass(m) = I'(Es-tot,,, Ass) (M) / (R3-tot,, , Ass) ().

2.5.3 The current operad 3—tmss

In [54] we have defined, for a quadratic operad P, the current operad P that is, the maximal operad P such
that the tensor product of a P-algebra A and a P-algebra B is a P-algebra with the usual product on A® B.
Let us compute 3-tot,,,Ass.

Proposition 16 The current operad of the operad 3-tot, , Ass is 3-tot,,, Ass itself that is
3—t(;f:13/./455 = 3-tot,,, Ass.

This result follows from the Proposition 14.

2.5.4 The dual operad 3-tot, ,Ass'

For n-ary quadratic operad P = I'(E)/(R) with E = E(n), the dual (quadratic n-ary) operad is defined as
follows
P! =T(E)/(R"),

where E =1""% E# © sgn,,, 1" denotes the suspension iterated (n — 2) times, # the linear dual and
R+ C T(E)(2n —1) is the annihilator of R C ['(E)(2n — 1) with respect to the pairing between I'(E)(2n — 1)
and I'(E)(2n — 1).

Proposition 17 The dual operad of 3-tot, , Ass is
3-tot,,, Ass' = 3—pai13Ass,

that is the operad for T13-partially associative algebras with operation in degree 1.

Proof. The operad P = 3-tot,,, Ass is the quadratic operad defined by

P =T(E)/(R),
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where p a ternary operation of degree 0, I'(E') the free operad generated by F =< p > and R C I'(E) is the
generated as K[35]-module by the relations

{ pp@ ) —p(I@p-m3®1),
p(p ® I2) — p(lz @ ).

We consider
posph=pu(Ii—1 @puIs_),

which ”plugs” p into the s-st input of p and
(f : U)(ila i27 e 7zm) = f(io_l(l)aio—l(Q)u e 7io_1(7rz))a

if feT(u)(m),o € Xp,.

We get E(3) =< a > where a is a ternary operation of degree 1 satisfying < p,a >= 1. The pairing
between I'(E)(5) and I'(E)(5) is given by

< (:U‘ 0 M)(il,iQ,ig,i4,i5), (Oé 0; « > (il,ig,ig,i4,i5))
s (123 45N (123 45
- ‘LL, g 5 ,L'l i2 ig i4 7;5 - g 5 il - - - - )
for j =1,2,3. So
<(,LLOl/,L—/,LOQ/14'7'13)(1,2,374,5),(0401CY—O(OQCY'Tlg+O[0304)(1,2,374,5)>
=< po1 ph,xo1 0 >+ < [LOg 4+ T3, 02 (¢~ T13 >

=l-<poyp,aopa>=1-1=0,

< (poyp—pozp)(1,2,3,4,5), (0o a—aoga- 13+ oz a)(1,2,3,4,5) >
=< poy h,oxoy > — < pogp, o3 >=1—-1=0.

The dual operad is then the quadratic operad
P'=T(a)/(RY),
with o ternary operation of degree 1 and R generated by
ala® ) —al®a-11301)+ a(la ® a).
So this operad is the operad of ternary 713-partially associative algebras with operations of degree 1.
Remark. A direct computation similar to [52] shows that
dimP(3) =6, dimP(5) = 5!, dimP(7) =T!

The generating function of P is similar to the generating function of 3-totAss. Likewise the generating
function of 3-pa; , Ass is the generating function of 3-pa'Ass. ;From [33] the operads 3-tot.Ass and 3-pa' Ass
are Koszul. We conclude that 3-tot, , Ass is Koszul.



Chapter 3

n-ary Lie algebras

The notion of n-ary algebras, that is vector spaces with a multiplication concerning n-arguments, n > 3,
became fundamental since the works of Nambu. Here we first present general notions concerning n-ary
algebras and associative n-ary algebras. Then we will be interested in the notion of n-Lie algebras, initiated
by Filippov, and which is attached to the Nambu algebras. We study the particular case of nilpotent or
filiform n-Lie algebras to obtain a beginning of classification. This notion of n-Lie algebra admits a natural
generalization in Strong Homotopy n-Lie algebras in which the Maurer Cartan calculus is well adapted.

3.1 n-ary algebras

3.1.1 Basic definitions

Let K be a commutative field of characteristic zero and V' a K-vector space. Let n be in N, n > 2. A n-ary
algebra structure on V' is given by a linear map

w:Ver - v.

We denote by (V, 1) such an algebra. Classical algebras (associative algebras, Lie algebras, Leibniz algebras
for example) are binary that is given by a 2-ary product. In this paper, we are interested in the study of
n-ary algebras for n > 3. A subalgebra of the n-ary algebra (V, 1) is a vector subspace W of V' such that the
restriction of p to W®" satisfies p(W®™) C W. In this case (W, u) is also a n-ary algebra.

Definition 19 Let (V,p) be a n-ary algebra. An ideal of (V, ) is a subalgebra (I, ) satisfying
p(VP @I eVen ) Cl,
forallp=0,--- ,n—1 and where VOO QI =T V& =1.
Definition 20 Let (Vi,p1) and (Va, u2) be n-ary algebras. A morphism of n-ary algebras is a linear map
p : Vi — Vs satisfying
p2 0 %" =@ o .
In this case, the linear kernel Kery of the morphism ¢ is an ideal of (Vi, u1). In fact, if v € Kery, then

(1 ® - @V - @vp_1)) = p2(p(v1) @ (V) ®--- @ Y(vp-1)) = 0.

To simplify notations, we identify the linear map p on V®" with the corresponding n-linear map on V™.
Then we write pu(vy @ -+ @ vy,) as well as p(vy - vy« - vy,).

33
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3.1.2 Anticommutative n-ary algebras

Let (V,u) be a n-ary algebra. It is called anticommutative if y(v1 ® - - - ®v,,) = 0 whenever v; = v, for i # j.
Since K is of characteristic 0, this is equivalent to

1(Vo) @+ ® Vo(my) = (1) p(v1 @ -+ @ vy,),

for any ¢ in the symmetric group %,, where (—1)%(®) is the signum of the permutation o. If ;1 is an antisym-
metric n-ary multiplication, we write
['Ula e 7vn}

instead of p(v1 ® - -+ @ vy,).

3.1.3 Symmetric and commutative n-ary algebras
A n-ary algebra (V, u) is called symmetric if it satisfies

,U/(Ua'(l) Q- ®Ua'(n)) = M(Ul ®- & vn)7

for all v1,--- ,v, € V and for all o € X,,. It is called commutative if
Z (=¥ p(v5(1) ® ++ @ V() =0,
oEY,
for all vy,--- ,v, € V. Of course, any symmetric n-ary algebra is commutative.

3.1.4 Derivations
Let (V, 1) a n-algebra.

Definition 21 A derivation of the n-algebra (V, ) is a linear map

D:V -V
satisfying .
D(p(vr, -+ ,vn)) = Y pplvr, -+, D(vi), -+, vn),
i=1
for any vy, ,v, €V.

All derivations of (V, i) generate a subalgebra of Lie algebra gl(V'). It is called the algebra of derivations of
V and denoted by Der(V).

Remark. For any vy, ,v,-1 in V| let ad(v1,- -+ ,v,—1) be the linear map given by

ad(vla"' 7vn—1)(v) = ,U(Uh"’ 7vn—1av)'

Then this linear map is a (inner) derivation if and only if the product p satisfies

n

M(vla"' 7vn71a,u(u1a"' ,Un)) = ZM(Ula 7/1'(’013"' 7’U’n71aui)>"' 7un)~ (31>
i=1

We will study such a product for n-Lie algebras. If n = 2, this shows that the maps ad(X) are derivations
of (V, ) if and only if the binary product satisfies

(o1, plur, uz)) = p(p(vi, u), uz) + p(ua, p(v, v2))

and (V, u) is a Leibniz algebra ([11]). Thus, for any n, a n-algebra (V, 1) satisfying Equation (3.1) is called
n-Leibniz algebra.
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3.1.5 Simple, nilpotent n-ary algebras
Definition 22 A n-ary algebra (V,p) is called simple if
e 1 is not abelian (i.e u(V---V)#£0).
o Any ideal is isomorphic to V or is equal to 0.
We define the derived series by

v =,
{ V) = (k=D Yy k=1 Y,

and the lower central series by

vi-v,

VE = u(VFL VY, V).
Definition 23 The n-ary algebra (V, ) is called

e Solvable if there is an integer k such that V%) = 0.

o Nilpotent if there is an integer k such that V¥ = 0.

The definitions presented here are the definitions given in [36].

3.2 n-Lie algebras

35

Many notions of n-Lie algebras have been presented to generalize Lie algebras for n-ary algebras. The
first one is probably due to Filippov ([14]). These algebras have been studied from an algebraic point of
view (classification, simplicity, nilpotency, representations) and because of their relations with the Nambu
mechanic. The second one is the notion introduced with the strong homotopy algebra point of view. In this
paper we are concerned by the two approaches. To distinguish these different definitions we will call n-Lie
algebras the first one and Lie n-algebras or sh-n-Lie algebras in the second one. In this section, we study

Filippov algebras.

Definition 24 An anticommutative n-ary algebra is a n-ary Lie algebra or simpler n-Lie algebra if the

following Jacobi identity holds:

n
[[Ula"' aun]7v17"' ;/Un—l} = Z[u17"' 7Ui—17[ui7vl7"' y Un—1]s i1, " ,Un],
=1

fO’I” any Uy, ,Un,V1, ** ,Vn-1 ev.

This last condition is called Jacobi identity for n-Lie algebras.

3.2.1 Fundamental examples

1. This example was given by Fillipov. Let A be a n-dimensional vector space on K. Let {vy,---

a basis of V. The following product

[U17U2> . ,'UA% . 7Un+1] — (_1)7L+1+ivi7

for i =1,--- ,n+ 1 provides A with a n-Lie algebra structure. We denote this algebra A, ;1.

) UnJrl} be

Theorem 25 If K = C, every simple n-Lie algebra is of dimension n+ 1 and it is isomorphic to Ap41.
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2. Let A = K[Xy,---,X,] be the associative algebras of n indeterminates polynomials. We consider the
product
[P17"' aPn] :JGC(Pl,"' 7Pn)7

where Jac denotes the Jacobian, that is the determinant of the Jacobian matrix of partial derivatives of
Py, -+, P,. Provided with this product, A is an infinite dimensional n-Lie algebra.

3. The Nambu brackets. It generalizes directly the previous example. Let A = C®(R?) be the algebra of
differential functions on R3. This algebra is considered as classical observables on the three dimensional
space R3 with coordinates x,y, z. We consider on A the 3-product

{f1, f2, f3} = Jac(f1, fa, f3)-

This product is a 3-Lie algebra product which generalizes the usual Poisson bracket from binary to ternary
operations.

4. ([59]). Let A =K[Xy,---,X,] be the associative algebra of n indeterminates polynomials. Let I,. be the
linear subspace of A linearly generated by the monomials of A of degree greater than or equal to r. Clearly
I, is a subspace of I3 as soon as r > 3. We define J,. = I3/, for r > 3. For any Q1, - ,Q, € J,. we put

[Qla e 7Qn] = Jac(Qla T 7Qn)
This product is a n-Lie algebra bracket and @ is a finite dimensional nilpotent n-Lie algebra.

5. Every n-Lie algebra of dimension n is abelian.

3.2.2 Nilpotent n-Lie algebras

In the first section we have defined nilpotency for general n-ary algebras. Since any n-Lie algebra is a
n-Leibniz algebra, any adjoint operator ad(vy,- -+ ,v,—1) is a derivation.

Theorem 26 (/36]) For any finite dimensional nilpotent Lie algebras, the adjoint operators are nilpotent.
Conversely, if the adjoint operators of the n-Lie algebra V are nilpotent, then V is nilpotent.

Assume that V is a finite dimensional complex nilpotent n-Lie algebra. We will generalize the notion of
characteristic sequence of Lie algebras to n-Lie algebras. We consider the set of generators of V' which is
isomorphic to V/V?2.

Lemma 5
dim V/ V2> n.

Let us consider a free family {vy,--- ,v,_1} of n— 1 vectors of V — V2. The operator ad(vy,ve, -+ ,v,_1) is
a linear nilpotent operator of V' admitting vq,--- ,v,_1 as eigenvectors associated to the eigenvalue 0. We
consider now the ordered sequence of the similitude invariants (the dimensions of Jordan blocks ) of this
operator. It is of type (c1,-+- ,ck,1,---,1) with at least n — 1 invariant equal to 1, corresponding to the
dimension of the eigenspace generated by the eigenvectors v;. We assume that ¢; > -+ > ¢ > 0. We denote
this sequence c(v1, -+ ,Up—1).

Definition 27 The characteristic sequence of the nilpotent n-Lie algebra is the sequence

(V) = maz{c(v, - ,vn-1)},
where (v1,-++ ,v,_1) are n—1 independent vectors of V —V?2, the order relation being the lexicographic order.
Assume that dim V' = p. The possible extremal values of ¢(V') are

e (1,---,1) and V is an abelian n-Lie algebra,
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e (p—n+1,1,---,1). This sequence corresponds to a nilpotent operator ad(vi,ve,- - ,v,—1) with a
biggest nilindex.

Definition 28 A p-dimensional complex (or real) nilpotent n-Lie algebra is called filiform is its characteristic
sequence is equal to (p —n+1,1,--- ,1).
——

n—1
Examples

e We consider n = 3 and p = 4. The characteristic sequence is equal to (2,1,1). Let {v1, v, v3,v4} be a
basis of V' such that the characteristic sequence of ad(vy,vs) is (2,1,1). If {vgvs} is the Jordan basis
of this operator then we have

[v1, V2, v3] = vy4.

(From the classification of [8], we deduce that we have obtained the only filiform 3-Lie algebra of
dimension 4.

o We generalize easily this example. Let V be the p-dimensional 3-Lie algebra given by

(X1, X2, X3] = Xy,
[X17X27X4] - X5?

(X1, X2, Xp1] = X,

It is also a filiform 3-Lie algebra. It is a model ([25]) of the filiform 3-Lie algebras of dimension p, that
is any p-dimensional filiform 3-Lie algebras can be contracted on this algebra.

e Every filiform 5-dimensional 3-Lie algebra is isomorphic to

3.2.3 Graded filiform n-Lie algebras

Let f be a derivation of a complex filiform n-Lie algebra V. We assume that f is diagonalizable. The
decomposition of eigenspaces of V' gives a graduation of this n-Lie algebra. We consider the maximal abelian
subalgebra of Der(V') given by the diagonalizable derivations of V' which commute with f. We denote this
algebra T'(f).

Definition 29 The rank of V is the biggest dimension amongst the dimensions of T(f) for any diagonalizable
derivation f.

Proposition 18 The rank of any filiform n-Lie algebra is equal to or smaller than n.
Proof. We consider the model given by
(X1, Xoy o, X1, Xi] = X,
fori=n+1,---,p—1, with p=dim V. We can assume that X, Xo,---, X,, are eigenvectors. If we put
f(Xe) = A X,
for t =1,--- ,n, then other eigenvalues are

Ai=A 4+ Ao+ Ao
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and this implies
A==+ + A1) + e

Thus A1, - -+, A, are the independent roots of this algebra which is then of rank n. Let V; be any filiform n-Lie
algebra of dimension p. There exists (X1, -+, X,_1) independent vectors in V; — V{2 such that the charac-
teristic sequence of V; is given by the nilpotent operator ad(Xy, -, X,,_1). We consider the corresponding
Jordan basis of V. It satisfies

(X1, Xo, -, X1, Xi] = X

and other brackets are linear combinations of X,,41, -+ ,X,. Let f; be the endomorphism given by f;(X;) =
X if 1 <l <mand fi(X;) =tX; for n+1 <[ < p. This endomorphism generates a contraction of V; in the
model V. We deduce that the rank of V; is smaller than the rank of V.

e Let us consider the filiform 3-algebra

Any diagonalizable derivation which admits this basis as eigenvectors basis, satisfies
f(Xi) = XX,

with
A3 = A1, A = 201 + Ao, A5 = 31 + 2.

Then the rank is 2.

e For n = 2, we have the following important result: any Lie algebra which admits a nonsingular
derivation is nilpotent. This is false as soon as n > 3. We have the interesting example ([59]): consider
the n-Lie algebra given by

(X1, X2, -+, Xy] = Xo.

This algebra admits a non singular derivation but it is not nilpotent.

e In a forthcoming paper we develop the classification of filiform 3-Lie algebras whose rank is not 0.

3.3 sh-n-Lie algebras or Lie n-algebras

3.3.1 Definition

Definition 30 Let i1 be a n-ary skewsymmetric product on a vector space A. We say that (A, ) is a sh-n-Lie
algebra (or a Lie n-algebra) if u satisfies the (sh)-Jacobi’s identity:

Z (_1)E(U)M(N('xa(l)a T 7xo(n))7 LTo(n+1), " 71‘0(27171)) =0,
oc€Sh(n,n—1)

for any x; € A, where Sh(n,n — 1) is the subset of Yo,,—1 defined by:

Sh(n,n—1)={0 € ¥3p_1,0(1) <---<o(n),o(n+1)<---<o(2n—1)}.
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Moreover, we assume that p is of degree n — 2.
For example, if n = 3, we have the following (sh)-Jacobi’s identity, writing (123)45 in place of u(u(z1, 2, x3), 24, 25) ]

(123)45 — (124)35 + (125)34 + (134)25 — (135)24 + (145)23 — (234)15 + (235)14
—(245)13 + (345)12 = 0.

3.3.2 n-Lie algebras and sh-n-Lie algebras

Proposition 19 Any n-Lie algebra is a sh-n-Lie algebra.

Proof. The Jacobi condition for n-Lie algebras writes
po(p®I—1)o®, =0,

where v € K[Xg,,—1], the algebra group of the symmetric group X5, 1 on 2n — 1 elements, given by
v= Id+» (-1)'(in+1,,2n=1,1,2, i— Lii+1,--,n),
i=1

where (i,n+1,---,2n—1,1,2,--- ,i—l,?,i+1,~~~ ,n) is the permutation

1 2 ‘e n n.‘.l n_|_2 e PN [P 2n_1
i n+l -+ 2n—-1 1 2 e 1—=1 941 -+ n '

Let

w = Z (=1)g,

0€Xan—1

We have in K[Xg,_1], wov = a(n)w with a(n) =1 —n if n is odd and a(n) = 1+ n if n is even. This shows
that the vector w is in the invariant subspace of K[X2,_1] generated by the vector v. This means that the
identity

po(p®l—1)o®, =0
implies

po(p®l,—1)o®, =0

which is equivalent to the Jacobi identity for sh-n-Lie algebras.
Proposition 20 A sh-n-Lie algebra is a n-Lie algebra if and only if any adjoint operator is a derivation.

Proof. 'We have seen that a n-Lie algebra is a n-Leibniz algebras and these last are characterized by the
fact that any adjoint operator is a derivation.

Remark. Colored Lie algebras, colored n-Lie algebras. Let us consider a binary algebra with a
skew symmetric product satisfying a colored Jacobi identity:

of [Xs, X5, Xie] + BIX;, Xil, Xi + [ Xk, Xa], X;] = 0,

for any i < j < k, the constants o, 3,7 being in K. This identity is related to the vector v = ald + fBc + yc?
of K[¥3]. Let w = Id — 715 — 713 — T23 + ¢ + 2 the vector of K[¥3]. Since K is of characteristic 0, the Jacobi
identity, is equivalent to

po(u®Id)od, =0.

But in K[X3] we have
wov = (a+ﬁ+7)w.

Then, if a + 8 + 7 # 0, the colored Lie algebra satisfies the (non colored) Jacobi condition. This minimizes
the interest of the notion of colored Lie algebras. It is the same for colored n-Lie algebras.
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3.3.3 3-Lie admissible algebras

To simplify notations, we consider the case n = 3. In this case the product is of degree 1. A 3-ary algebra
(A, ) is called 3-Lie admissible if the antisymmetric product

[v1,v2,v3] = Z (=1 vy 1) V(2 Vo (3)
=PI

is a sh-3-Lie product.
Proposition 21 A n-ary algebra (A,-) is 3-Lie admissible if and only if we have

Z (_1)6(0’)((1}0(1) *Vs(2) 00(3)) *Vo(4) " Vo (5) + Vs(1) * (UU(Q) *Vo(3) * Uo’(4)) * Vs (5)
cEYs
F(Vo(1) * Vo(2) - (Vo(3) * Vo(4)  Va(5))) =0,

for any vy, v9,v3,v4,v5 € A.
Examples.

e Any 3-ary partially associative algebra is 3-Lie admissible.

e In [55], a notion of o-associative algebra have been introduced in the space of tensors (2,1) based on
a vector space. In case of symmetric tensor, this product can be simplified. A symmetric tensor is
defined by its structure constants 7;;, which satisfy

Tijre = Thki = Thj-
The 3-product T'- U - V whose structure constants are

(T-U-V)ijk = ZTlilekiVljk
]

is 3-Lie admissible. Moreover the associated sh-3-Lie algebra is a 3-Lie algebra.

3.3.4 Maurer-Cartan equations

We assume in this section that any n-Lie algebras is of finite dimension. To simplify the presentation, we
assume also that n = 3. Let V be a finite dimensional 3-Lie algebras. Let {v1,--- ,v,} be a basis of V. The
structure constants of V related to this basis are given by

l
1
{Uiyﬂjavk} = § Ci,j,kvl
=1

and satisfy l .
_ el\o
Cijk = (=1 Co oo i)

for any o € ¥3. The Jacobi condition writes

Citjkt tm Citjlt e T ijntm tik T kai Fim — ClemCiit + Chin i
—CiChim + CiemChit = CiimChike + Crum Ciij = 0,
forany i < j < k,l<mands,t=1,---,p. Let {w1,--- ,wp} be the dual basis of {vq,---,v,}. We consider

the graded exterior algebra A(V) = @A* of V and the linear operator

d: A' (V) =V* = A3(V)
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given by
dw; = Z ijkwi ANwj A wp.
i<j<k

If we denote also by d the linear operator

d:N3(V)=V*— A5(V)

defined by
d(w; Aw;j Awg) = dw; Aw;j Awg +w; A dwj Awi +w; Awj A dwy,
we obtain
d(dw;) = Z C’fjk(dwi Awj Awy + wi A dwj Awg + w; Aw;j A dwg
i<j<k
= Z Céjk(Clistwl Aws Awg Awj A wg + C’ljstwi Awp Aws Aw A wy
i<j<k

+CF wi A wi Awp Aws A wy).

In this summand, all the products containing two equal factors are zero (this justifies to use the exterior
algebra). In the same way, the Jacobi condition related to five vectors is trivial as soon as two vectors are
equal. In fact, if we compute the Jacobi condition for the vectors (X7, Xo, X3, X1, X;1) we find 0 = 0 and for
the vector (Xl, XQ, X3, Xl, X5) we find

[ X1, X2, X3], X1, X5] + [[X1, X2, X5], X3, X1] — [ X1, X3, X5], X2, X1]
_[[XQaXvaXl]leaXS]_[[X27X17X5]7X17X3]_[[X37X17X5]7X17X2] - 07

that is, 0 = 0. Thus the Jacobi condition concerns a family of 5 independent vectors. Let us return to the
computation of d(dw). The coefficient of d(dw;) related for example to wy A we A ws Awy Aws corresponds to
the coefficient of X in the Jacobi condition related to (X7, Xo, X3, X4, X5). Thus

d(dwl) = 0.
These relations can be called the Maurer-Cartan equations.

Remark. We cannot use the same calculus to obtain Maurer-Cartan equations adapted to the structure
of n-Lie algebras. This means that the Maurer-Cartan equations of a n-Lie algebra are the Maurer-Cartan
equations of this algebra considered as a sh-n-Lie algebra. In the classical case of Lie algebras, we have also
such a situation. For example, when we consider the 2-step nilpotent Lie algebras, defined by the 2-step
Jacobi condition

[[Xi’ Xj]v Xk] =0,

there is no exterior calculus adapted to this special Jacobi condition. The Maurer-Cartan equations of a
2-step nilpotent algebra are the Maurer-Cartan equations of this algebra considered as a Lie algebra.
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Chapter 4

An algebraic approach to the set of
intervals.

In this chapter we present the set of intervals as a normed vector space. We define also a four-dimensional
associative algebra whose product gives the product of intervals in any cases. With this approach we obtain
a notion differential calculus and a natural linear algebra on the set of intervals.

Introduction The interval arithmetic, or interval analysis has been introduced to compute very quickly
range bounds (for example if a data is given up to an incertitude). Now interval arithmetic is a computing
system which permits to perform error analysis by computing mathematic bounds. The extensions of the
areas of applications is important: non linear problems, PDE, inverse problems. It finds a large place of
applications in controllability, automatism and robotic. The interval arithmetic is based on the following
natural operations (called also Minkowski operations): if X and Y are bounded intervals of R, then

XoY={zoy/zeX, yeY},

where ¢ denotes a binary operation such as +, —, *. Thus the set of intervals IR of R is a set provided with
some binary operations but these operations do not give an algebraic structure on IR. In many problems
using interval arithmetic, there exists an informal transfers principle which permits, to associate with a
real function f a function define on the set of intervals IR which coincides with f on the interval reduced
to a point. But this transferred function is not unique. For example, if we consider the real function
f(x) = 2% + 2 = x(x + 1), we associate naturally the functions f; : IR — IR given by f1(X) = X(X + 1)
and fo(X) = X2+ X. As IR is not algebraically structured, these two functions do not coincide. Usually this
problem is removed considering the most interesting transfers. But the qualitative ”interesting” depends
of the studied model and it is not given by a formal process. There exists some properties of the inclusive
function ( see [34]). In this work, we determine a natural extension IR of IR provided with a vector space
structure. The vectorial substraction X \ Y does not correspond to the classical difference of intervals and
the interval ~ X has no real interpretation. But these "negative” intervals have a computational role. If a
problem conduce to a "negative” result, then this problem is ”pervert” (see Lazare Carnot with his feeling on
the natural negative number). We prove also, in this paper, that the vector space IR is a Banach space, that
is, a complete normed space. The interest of such a structure is that it permits to introduce a differential
calculus and to use some important tools and the fixed point theorem.

The plan of this chapter is the following. In a first time we recall the semi-group structure on the set IR
of intervals. By a classical process of completion, we endow this completed semi-group, denoted by IR, with
a vector space structure. The norm given by || X|| = I(X) + |¢(X)| where [(X) is the length of the interval
X and ¢(X) the center of X is complete and (IR, ||.||) is a Banach space. We define the notion of differential
function with values of IR. Next we extend the classical product to have a distributivity property. We end
this chapter by giving some simple applications.

An interval is a bounded non empty connected closed subset of R. The classical arithmetic operations on
intervals are defined such that the result of the corresponding operation on elements belonging to operand
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intervals belongs to the resulting interval. That is, if ¢ denotes one of the classical operations +, —, %, we
have

[z7 e oy yt ] ={zoy /e la™, 2], yely,y"]}
In particular we have
{ (272t + lyy =27 +y 2ty
o) =yt = e -yt — )
and
[ 2t ] [z, 27| =[x~ —2t, 2" —z7] #0.
Let IR be the set of intervals. It is in one to one correspondence with the half plane of R2:

P ={(a,b),a < b}.

This set is closed for the addition and P; is endowed with a regular semi-group structure. Let P, be the
half plane symmetric to P; with respect to the first bisector A of equation y — z = 0. The substraction on
IR, which is not the symmetric operation of +, corresponds to the following operation on P;:

(a,b) — (¢,d) = (a,b) + sa o so(c,d),

where sg is the symmetry with respect to 0, and sa with respect to A. The multiplication * is not globally
defined. Consider the following subset of P;:

1={(a,b) € P1,a >0,b> 0},
Pr2 = {(a,b) € P1,a <0,b >0},
3 ={(a,b) € P1,a <0,b <0}

We have the following cases:
1) If (a,b), (¢,d) € P1,1 the product is written (a, b) * (¢, d) = (ac, bd).

The vectors ey = (1,1) and ez = (0, 1) generate Py ; that is any (x,y) in P ,1, can be decomposed as
(z,y) = ze; + (y — x)ey, with z > 0 and y — xz > 0.

The multiplication corresponds in this case to the following associative commutative algebra:
€1é1 = €y,
€1€9 = €2€71 = €92€9 = €9.

2) Assume that (a,b) € P11 and (¢,d) € P12 so ¢ <0 and d > 0. Thus we obtain (a,b) * (¢,d) = (bc, bd)
and this product does not depend of a. Then we obtain the same result for any a < b. The product
(a,b) * (¢,d) = (be, bd) corresponds to

€1€1 = €261 = €1
{ e1ey = egey = €3
This algebra is not commutative and it is different from the previous.

3) If (a,b) € P11 and (¢,d) € P13 thena > 0,b> 0 and ¢ < 0,d <0 and we have (a,b) * (¢, d) = (bc, ad).
Let e; = (1,1), e3 = (0,1). This product corresponds to the following associative algebra:

€€ = €y,
€162 = €3,
€g€1 = €1 — €92.

This algebra is not associative because (ezeq)er # ez(ere1). We have similar results for the cases (P12, P1,2), (P,
and (7)173, 'PLg).

An objective of this paper is to present an associative algebra which contains all these results.
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4.1 The real vector space IR

4.1.1 The group (IR,+)

We recall briefly the construction proposed by Markov [46] to define a structure of abelian group. As (IR, +)
is a commutative and regular semi-group, the quotient set, denoted by IR, associated with the equivalence
relations:

(x’y) ~ (Z7t) —=cr+t=y+z,

for all x,y, z,t € IR, is provided with a structure of abelian group for the natural addition:

(z,y) + (2,t) = (x + 2,y + 1)

where (x,y) is the equivalence class of (z,y). We denote by \(z,y) the opposite of (x,y) . We have \(z,y) =
(y,z). If = [a,a], a € R, then (x,0) = (0,—z) where —x = [—a, —a], and ~(z,0) = (0,). In this case,
we identify @ = [a, a] with a and we denote always by R the subset of intervals of type [a,a]. Naturally, the
group IR is isomorphic to the additive group R? by the isomorphism (([a, b], [c,d]) — (a — ¢, b — d). We find
the notion of generalized interval.

Proposition 22 Let X = (x,y) be in IR. Thus
1.If l(y) < l(x), there is an unique A € TR\ R such that X = (4,0),
2. fl(y) > l(x), there is an unique A € IR\ R such that X = (0, 4) = ~(4,0),
3. If l(y) = I(z), there is an unique A = o € R such that X = (o, 0) = (0, —a).

Any element X = (4,0) with A € IR — R is said positive and we write X > 0. Any element X = (0, A) with
A € IR — R is said negative and we write X < 0. We write X > X’ if X ~ X’ > 0. For example if X and X’
are positive, X > X’ <= [(X) > I(X’).. The elements («,0) with o € R* are neither positive nor negative.

4.1.2 Vector space structure on IR

In [46], one defines on the abelian group IR , a structure of quasi linear space with the external multiplication
given by Va, 3,7 € R and Va, b, c € IR, we have

ax(Bx7) = (axpf)x,

vx(a+b)=~vyxa+yx*b,

lxa=a,

(a+08)xc=axc+Bxcif af > 0.
Our approach is a little bit different. We propose to construct a real vector space structure on the group
(IR, +). We recall that if A = [a,b] € IR and a € RT, the product a4 is the interval [aa, ab]. We consider
the external multiplication: o o

R xIR — IR

defined, for all A € IR, by

{a-(A,O) = (a4,0)
a-(0,4) =(0,a4),

for all @ > 0. If « < 0 we put = —a. So we put:

{ OZ(A,O) :(O,ﬁA),
a-(0,4) = (34,0).

We denote aX instead of « - X. This operation satisfies

1. For any a € R and X € IR we have:



48 CHAPTER 4. AN ALGEBRAIC APPROACH TO THE SET OF INTERVALS.

2. For all o, 3 € R, and for all X, X’ € IR, we have

(a+ B)X = aX + B,
alX +X') = aX +aX’,
(@)X = a(BX).

The two other equalities are defined in the multiplication of quasi linear space. So we have the result:

Theorem 31 The triplet (IR, +,) is a real vector space and the vectors X1 = ([0,1],0) and Xy = ([1,1],0)
of IR determine a basis of IR. So dimg IR = 2.

Proof. We have the following decompositions:

{ ([a,8],0) = (b—a)X; + aks,
(Ov [Cv d]) = (C - d)Xl —cXy.

The linear map o
¢: IR — R?

defined by
{ ¢(([a,],0) ) = (b —a,a),
©((0,[e,d]) ) = (¢ —d, —¢)

is a linear isomorphism and IR is canonically isomorphic to R2.

Remark. Let E be the subspace generated by X,. The vectors of E correspond to the elements which have
a non defined sign. Then the relation < defined in the paragraph 1.2 gives an order relation on the quotient
space IR/E.

4.1.3 A Banach structure on IR

Let us begin to define a norm on IR. Any element X € IR is written (4,0) or (0, A). We define its length
1(X) as the length of A and its center as ¢(A) or —c(A) in the second case.

Theorem 32 The map || || : IR — R given by
X = UX) + [e(X)]
for any X € IR is a norm.

Proof. We have to verify the following axioms:
DX =0«<= X =0,
2) V2 € R |\¥] = Al
3) & + X7 < (1% + [[X7]].
1) If || X]| = 0, then I(X) = |¢(X)] =0 and X = 0.
2) Let A € R. We have

[IAX[] = LAX) + [e(AX) [ = [AL(X) + [Alle(X)] = [A[[|X]].

3) We consider that I refers to X and J refers to X’ thus X = (1,0) or = (0,1). We have to study the two
different cases:
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DX+ X =(I+J,0)or (0,]+J), then

NX+ X' = T+J)+ eI+ )| =11)+1J)+ |eI)+c(J)| <UT) + |e(D)] + 1(T) + |c(J)]
1] + (1]

ii) Let X + X' = (1,J). If (I, J) = (K,0) then K + J = I and

& + X' = ||(K,0)|| = U(K) + [e(K)| = U(I) = U(J) + |e(I) — c(J)]
that is
X + &X' <UT) + |e(D)] = UT) + ()] < UT) + (D] +UJT) + e(I)] = [|X]] + || X7]].
So we have a norm on IR.

Theorem 33 The normed vector space IR is a Banach space.

Proof. In fact, all the norms on R? are equivalent and R? is a Banach space for any norm. The vector space
IR is isomorphic to R2. Thus it is complete.

Remarks.

1. To define the topology of the normed space IR, it is sufficient to describe the e-neighborhood of
any point xo € IR for € a positive infinitesimal number. We can give a geometrical representation,

considering xo = ([a, b],0) represented by the point (a,b) € R?. We assume that xo = ([a,b],0) and €
an infinitesimal real number. Let Ay,---, A4 the points A; = (a —e,b—¢), Ay = (a+ 5,0 — 5), A3 =

(a+e,b+e), Ay = (a—5,b+5). If 0 < a < b, then the e-neighborhood of x¢ = ([a, b],0) is represented
by the parallelograms whose vertices are Aq, Ao, A3, Ay.

2. We can consider another equivalent norms on IR. For example
X)) = I~ X = Sup(|zl, ly[)

where X = ([z,y],0). But we prefer the initial one because it has a better geometrical interpretation.

4.2 A 4-dimensional associative algebra associated to IR

4.2.1 Classical product of intervals

We consider XY € IR. The multiplication of intervals is defined by

XY =min(z"y a7y 2ty 2t yt) max(a"y ", 27y 2Ty 2Ty "))

Let X = (X,0) and X’ = (Y,0) be in IR. We put

xx' =(XY,0).

For this product we have:

Proposition 23 For all X = (X,0) and X' = (Y,0) in IR, we have

x| < []x] |12
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Proof. If X = ([x1,x2],0) then
30 —
1)) = S22 o) >0,

<3
|\X||:%ifc()()<0.

Considering the different situations, we obtain
/ / 3 /
XX = ([T = (X)X

or 2||X|[I(X") or 1[|X’|[I(X). These expressions are always positive. We have ||X|[||X'|| = [|XX'|| if X or
X’ are reduce to one point.

Proposition 24 We consider X = (X,0) and X’ = (Y,0) in IR. We have

X CY = [|x] < |-

Proof. Consider X = [z1,x2] and Y = [y1, ya].

First case: y1 > 0. So 2||X'|| = 3y2 — y1. As X C Y, then 2||X|| = 3z2 — 27 and ||X]| < ||X7]|.

Second case: y1 < 0,y2 > 0. If ¢(Y) > 0, so 2||X’|| = 3y2 — y1. If ¢(X) > 0, from the first case ||X]] < [|X7]].
Otherwise 2||X|| = o —3x7. Thus || X]|| < ||X7]| if and only if 3ys —y1 > x9 —3x1, that is 3(y2 +21) > 2+ 11
which is true.

If ¢(Y) <0, then 2||X’|| = y2 — 3y1. If ¢(X) < 0, thus 2||X|| = z2 — 3z1 and [|X|] < [|X']]. If ¢(X) > 0,
[|X]] < ||X]| is equivalent to yo — 3y; > 3xe — x1. But ¢(Y) < 0 implies y1 + y2 < 0 and yo — 3y; > 4ys.
Similarly 3zo — 1 < 4xs, thus yo — 3y; > 3x2 — 1 because x3 < yso.

Third case: y; < 0, y2 < 0. Similar computations give the result.

Remark. If X > 0, i.e X = (X,0), and &’ < 0,ie. X' = (0,Y), so ~&x’ > 0 and if X C Y we deduce
XN < I~ &7 = []x7]].

4.2.2 Definition of A,

In introduction, we have observed that the semi-group IR is identified to P;,; U P12 U Py 3. Let us consider
the following vectors of R?

€1 = (13 1)7

€2 = (0? 1)7

€3 = (—1,0)7
€4 = (—1,—1).

They correspond to the intervals [1,1],[0,1],[—1,0],[—1, —1]. Any point of Py 1 U P12 U Py 3 admits the
decomposition
(a,b) = areq + ages + ages + agey

with a; > 0.The dependance relations between the vectors e; are

ey =e3+ €1
€4 = —€7.

Thus there exists a unique decomposition of (a, b) in a chosen basis such that the coefficients are non negative.
These basis are {e1 ex} for P11, {e2,e3} for P12, {es, es} for Py 3, Let us consider the free algebra of basis
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{e1, €2, e3, €4} whose products correspond to the Minkowski products. The multiplication table is

€1 €9 €3 €4
€1 €1 €9 €3 €4
() €9 €9 €3 €3
€3 €3 €3 €9 €2
€q €4 €3 €9 €1

This algebra is associative. Let us denote this 4-dimensional associative algebra by A4. If z,y € Ay, thus
x =Y aje; and y = > B;e; and the analytic expression of the product is

vy = (01B1 + aufa)er + (1 fa + azf + azf2 + asfBs + azfs + auflz)es
+(anfs + asfi + aofs + azfa + afs + caufa)es + (1 s + aafr)es.

Theorem 34 The multiplication of intervals in the algebra Ay is distributive with respect the addition.

Example. Let us consider the product
The classical operations give
(2,3].[1,9] = [2,27]

and
[2,3].[-1,3] + [2,3][2,6] = [-3,9] + [4,18] = [1,27]

this shows the non distributivity of the classical product. In A4 we have

[2,3] = 261 + €2,
[—1, 3} = 362 + es,
[2,6] = 2e1 + 4es.

Thus
[2, 3].[—1, 3] + [2, 3} [2, 6} = (261 + 62)(362 + 63) + (261 + 62)(261 + 462)
= (9es + 3e3) + (dey + 14es)
= 4eq1 + 23es + 3e3

and
[2,3].([-1,3] +[2,3]) = (2e1 +e2)((3e2 + e3) + (2e1 + 4des))
= (2e1 + e2) + (2e1 + Tea + e3)
= 4deq + ldes + 23e3 + 2e9 + Tes + €3
= 4deq + 23es + 3es.

The vector 4e; 4 23ex + 3e3 € Py 3. It is written

dey + 23es + 3ez = ey +23ea + 3(ea — €1) = e1 + 26es.
This vector corresponds to [1,27]. Thus we have

[2,3].[-1,3] + [2, 3][2,6] = [2,3]([-1,3] + [2,6]) = [1,27].

This example shows how to pass from Ay to IR.The difficulty results from the fact that the application
¢ : IR — A4 is not bijective. It is defined by

[a,b] € P11,0(x) =aer +(b—a)ea (a>0,b—a>0)
[G/, b] S Pl,Za 90(3:) = —aes + b€2 (—Cl 2 07 b Z 0)
[a,b] € P13, 0(x) = —bes + (b—a)es (—b>0,b—a>0).

€T
T
T
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Consider in A4 the linear subspace F' generated by the vectors e; — es + e3,e1 + e4. As

(e1 +eq)(er +eq) =2(e1 +e4q)
(e1 +ea)(er —ea+e3) =e1+ey
(e1 —ea+e3)(er —ex+e3) =eq,

F is not a subalgebra of A,. Let us consider the map
?: IR -A4/F

defined from ¢ and the canonical projection on the quotient vector space A4/F. A vector z =3 a,e; € Ay
is equivalent to a vector of A4 with positive components if and only if

042+O[320.

In this case, all the vectors equivalent to x = > aje; with as + ag > 0 correspond to the interval [o —
a3 — ay, a1 + ag — ay] of TR. Thus we have for any equivalent classes of A4/ F associated with 3 «,e; with
ag + a3z > 0 we have a preimage in IR. The map @ is injective. In fact, two intervals belonging to pieces
P14, P1,; with ¢ # j, have distinguish images. Now if (a,b) and (¢, d) belong to the same piece, for example
P11, thus

D(a,b) ={(a+ A+ pb—a— XA u),\ueR}

If B(c,d) = @(a,b), there are A, 4 € R such that (¢,d) = (a + A+ p,b—a — A\, A\, p). This gives a = ¢,b = d.
We have the same results for all the other pieces.Thus @ : IR —.A4/F is bijective on its image, that is the
hyperplane of A4/F corresponding to as + ag > 0.

Practically the multiplication of two intervals will so be made: let X, Y € R. Thus X =Y w;e;, Y = Bie;
with a4, 8; > 0 and we have the product

XeoY =7 p(X).0(Y))

this product is well defined because ¢(X).p(Y) € Imgp. This product is distributive because

Xe(Y+2Z) =9 Ho(X)p(Y +2))
=7 Hp(X)(p(Y) + ¢(2))
=7 Hp(X).o(Y) + p(X).0(2))
=XeY+XeoZ

Remark. We have
7 He(X) (Y +2)) 7 H(e(X)7 oY + 2))).

We shall be careful not to return in IR during the calculations as long as the result is not found. Otherwise
we find the classic problems of the distributivity.

We extend naturally the map ¢ : IR — Ay to IR by

for every A € IR.

Theorem 35 The multiplication

is distributive with respect the addition.

Proof. This is a direct consequence of the previous computations.
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4.2.3 The algebras 4, and an better result of the product

In this section, we compute the product of intervals using the product in A, and we compare with the
Minkowski product. Let X = [a,b] and Y = [¢, d] two intervals.

Lemma 6 If X and Y are not in the same piece Py, then X oY corresponds to the Minkowski product.
Proof. 1) If X € P11 and Y € Py 5 then ¢(X) = (a,b—a,0,0) and ¢(Y') = (0, d, —c,0). Thus

e(X)e(Y) = (aer + (b—a)e)(des — ces)

= bd62 — cbes
= (0, bd, —cb,0)
w([cb b)),

i) If X € P17 and Y € Py 3 then o(X) = (a,b — a,0,0) and ¢(Y) = (0,0,d — ¢, —d). Thus

(X)p(Y) = (ae1+ (b—a)ez)((d — c)es — des)
= (ad — bc)es — adey
(0 0,ad — cb, —ad)
([bc ad)).

iii) If X € P1o and Y € Py 3 then ¢(X) = (0,0, —a,0) and ¢(Y) = (0,0,d — ¢, —d). Thus

P(X)p(Y) = (bea — fll)es)((d —c)ez — dey)
; (0, ;c, —cbe)
= ¢([be, ad)).

Lemma 7 If X an Y are both in the same piece P11 or Py 3, then the product X &Y corresponds to the
Minkowski product.

The proof is analogous to the previous.
Let us assume that X = [a,b] and Y = [¢,d] belong to P; 3. Thus ¢(X) = (0,b, —a,0) and ¢(Y) =
(0,d, —c,0). We obtain
XY = (bey — aes)(des — ces) = (bd + ac)ea + (—bc — ad)es
Thus
[a, b][c,d] = [bc + ad, bd + ac].
This result is greater that all the possible results associated with the Minkowski product. However, we have

the following property:

Proposition 25 Monotony property: Let X1, X; € IR. Then

{ X CXy=X,0ZC Xyo Z for all Z € IR.
P(X) <P(Xe) = (X1 0 2) <P(Xz 0 2)

The order relation on A, that ones uses here is

( ,0) < (¥1,92,0,0) <= y1 <1 and 22 < yo,
(£U1796270 0) <(0,92,¥3,0) <= x2 < yo,
(0,22,23,0) < (0,y2,y3,0) <= 23 < y3 and 3 < ¥,
(0,0,23,24) < (0,y2,93,0) <= x3 < v,
(0,0, z3,24) < (0,0,y3,91) < 3 < y3 and y4 < x4.
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Proof. Let us note that the second property is equivalent to the first. It is its translation in 4,. We can
suppose that X; and X; are intervals belonging moreover to P 2: ¢(X1) = (0,b, —a,0), o(X2) = (0,d, —c,0).
If o(Z) = (21, 22, 23, 24), then

D(X) @ Z2) = (0,bz1 + bza — azg — azg, —azy + bzz — aze + bz, 0),
D(Xy @ Z2) = (0,dz1 + dzg — cz3 — cz4, —C21 + dzg — c29 + d24,0).

Thus
(b—d)(z1 + 22) —
—(a—¢)(z1 + 22) +
<

But (b—d), —(a—c¢) <0 and 22,23 > 0. This implies p(X} o Z)

(@ —c)(z3 —24) <0,
(b—d)(z3 = 24) <0.

@(XQ [ Z)

(X0 2)<P(Xr0Z) — {

We can refine our result of the product to come closer to the result of Minkowski. Consider the one
dimensional extension A4 ®Res = Aj, where e5 is a vector corresponding to the interval [—1, 1] of P; 2. The
multiplication table of Aj5 is

€1 | €2 | €3 | €4 | €5
€1 | €1 | €2 | €3 | €4 | €5
€2 | €2 | €2 | €3 | €3 | €5
€3 | €3 | €3 | €2 | €2 | €5
€4 | €4 | €3 | €2 | €1 | €5
€5 | €5 | €5 | €5 | €5 | €5

The piece P12 is written P12 = P1 21 U P1,21 where P1 o1 = {[a,b],—a < b} and P1 22 = {[a,b], —a > b}.
If X =la,b] € P121and Y = [¢,d] € Py 2,2, thus

o(X).p(Y) = (0,b+a,0,0,—a).(0,0,—c — d,0,d) = (0,—(a + b)(c+ d),0,0,a(c+ d) + bd).

Thus we have
X oY =[-bd — ac — ad, —bc].

Example Let X = [-2,3] and Y = [—4,2]. We have X € P; 27 and Y € Py 22. The product in A4 gives
XeoY =[-16,14].

The product in As gives
X oY =[-12,10].

The Minkowski product is
[—2,3].[-4,2] = [-12,8].

Thus the product in As is better.

Conclusion. Considering a partition of P 2, we can define an extension of A4 of dimension n, the choice
of n depends on the approach wanted of the Minkowski product. For example, let us consider the vector eg
corresponding to the interval [—1, %] Thus the Minkowsky product gives eg.e¢ = ey where e; corresponds
to [—%, 1]. We obtain a 7-dimensional associative algebra whose table of multiplication is

€1 €9 €3 €4 €5 €g (&rd
€1 €1 €9 €3 €4 €5 €6 er
€2 €9 €9 €3 €3 €5 €g (&rd
€3 €3 €3 €9 €9 €5 er €g
€4 €4 €3 €9 €1 €5 €7 €g
€5 €5 €5 €5 €5 €5 €5 €5
€6 €g €6 er er €5 €7 €6
(&rd er (rd €g €g €5 €g (&4
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Example Let X = [-2,3] and Y = [—4,2]. The decomposition on the basis {e1, - ,er} with positive
coefficients writes

X =e5+2e7, Y = 2eq.

Thus
X oY = (e5 + 2e7)(4eg) = des + 8eg = [—12,8].

We obtain now the Minkowski product.

4.2.4 Algebraic study of A,

In A4 we consider the change of basis
el =e; —ey
el =e;,1=2,3
ey =eq — e3.

This change of basis shows that A4 is isomorphic to A}

€1 €9 €3 €y
€1 €1 0 0 €4
€9 0 €9 €3 0
€3 0 €3 €9 0
€4 €4 0 0 €1

The unit of A} is the vector e; + ey. This algebra is a direct sum of two ideals: A} = I} + Iy where Iy
is generated by e; and e4 and I» is generated by es and e3. It is not an integral domain, that is, we have
divisors of 0. For example e - e5 = 0.

We denote by A" the group of invertible elements. We compute this group. The cartesian expression of
this product is, for © = (21, 2, x3,x4) and y = (y1,¥y2, Y3, y4) in A}:

-y = (T1Y1 + TaYa, T2y2 + T3Y3, T3Y2 + T2Y3, Tay1 + T1Ya).

We consider the equation
z-y=(1,1,0,0).

We obtain
T1Y1 + Tays = 1,
Tay2 + x3y3 = 1,
z3Y2 + x2y3 = 0,
z4y1 + 21y4 = 0.

For a given vector z, we obtain a solution y if and only if:
(aF — 23)(23 — 25) #0.

Proposition 26 The multiplicative group A} s the set of elements © = (x1, %2, T3, 24) such that

T4 7é :I:J,'l,
I3 7é :l:QSQ.

If x € A} we have:

1 ( T T2 T3 T4 )
- 2 27 .2 27 .2 27 .2 2 :
r] —T§ x5 — 15 x5 —T5 ] — T
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4.3 Divisibility and an Euclidean division

We have computed the invertible elements of A)j. If # = (21, x9, 73, 24) € Ay and if A = (22 —23)(23—22) #0

then
-1 _ 1 X2 €3 T4
r =13 20 2 2 2 2 /-

27 27
x] — 1wy x5 — 5 x5 —T5 T] — Tf

The elements associated to X = (K, 0) are of the form

(21,22,0,0) if 0 < 21 < 2,

(0,%‘2,—1‘1,0) ifr; <0< xo,

(0,0, -1, —.1‘2) if x1 <z <0,
and to X € (0, K)

(0,0,xl,l‘g) if 0 < 21 < 29,

(—21,0,0,29) if 1 < 0 < xa,

(—x1,—x2,0,0) if 1 < 29 < 0.

1 1
The inverse of (x1,x2,0,0) with 0 < 1 < zo is (, 7O,O).
X1 T2

1 1
The inverse of (0,0, —x1, —x2) with x; < xo <0 is <O, 0, o _:v)
1 2

1 1
The inverse of (0,0, 1, 22) with 0 < 1 < zo is (0, 0, —, )

Ty T2
. . . 1 1
The inverse of (—x1, —x2,0,0) with 1 <z <0is | ——,——,0,0].
Ty T2

For X = (0,29, —21,0) or (—=1,0,0,23) with z125 <0, then A =0 and X is not invertible. Then if A # 0
the inverse is always represented by an element of IR thought .

4.3.1 Division by an invertible element

We denote by IR" the subset (X,0) with X = [x1,22] and 0 < 2.

Proposition 27 Let X = (X,0) and Y = (Y,0) be in R with X = [z1,22], Y = [y1,v2]. If 925 22 then
Y1 T1

there exists an unique Z = (Z,0) € IR" such that y=XxZ.

Proof. Let Z be defined by ¢(Z) = 3 <y2 + yl) and [(Z) = <y2 - yl) . Then [(Z) > 0 if and only if
X9 xr1 €2 A
Y2 o0 Y2

== > == that is = > Q. Thus we have Y = X Z. In fact

ey = (L too) o (L1 ).

Tr1 T2 X1 T2
Thus
_ _ 1 1 yl y2
@(y) QD(X) 1:(y17y2a050)' (7 507 > = ( y T 7O>
r1 T r1 T2
As L < P2
I To
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We can note also that

.T17£L'2

Then the divisibility corresponds to the multiplication by the inverse element.

4.3.2 Division by a non invertible element

Let X = [—x1, zo] with x1, 29 > 0. We have seen that ¢(X) = (0, x2,x1,0) is not invertible in .44. For any
M = (y1,92,y3,91) € As we have

O(X) - M = (0, z2y2 + 21y3, T1Y2 + 22Y3,0)

and this point represents a non invertible interval. Thus we can solve the equation Y = X e Z for X =
([—x1,22],0) , Y = ([—y1,¥y2),0) with 1,22 > 0 and y;1,y2 > 0. Putting ¢(Z) = (21, 22, 23, 24), we obtain

(0>y2791;0) = (071'27.’171,0) : (21722323724)7

that is
Yo = X229 + T123,
Y1 = Taz3 + 122,

(2)=(me)(2)

or

If 22 — 23 # 0,

2 = 9613/; - 3331/2,
Ly — T3
Ty — T3
If 22 — 23 = 0 then 21 = 25 and the center of X = [—z1,x1] is 0. Let us assume that z1 # x5. If 23 — 23 < 0

that is 1 < x5 then
T1Y1 — TY2 < 0,
T1Y2 — x2y1 < 0,
T T T
and — < yﬁ, < Noqfa="20 < 1 we have y2 > ayi, y1 > ays then yo > a?ys and 1 — a? > 0. This
T2 Yy T2 Y2 T2
case admits solution.

Proposition 28 Let X = ([—x1,x2],0) with z1,22 > 0 and x1 < 2. Then for any Y = ([—y1, y2],0) with

y1,y2 > 0 and n o %, B there is 2 = ([=21, 22],0) such that Y = X & Z.
x

IR
2 Y1 X2 Y2

Suppose now that 27 — 23 > 0 that us ¥; > xo. In this case we have
T1y1 — Tay2 > 0,
T1Y2 — T2y1 > 0,
Y2

T T
thatis—<—1and$<—1.
Y1 T9 Y2 X9

Proposition 29 Let X = ([—x1,22],0) with 1,22 > 0 and x1 > x2. For any ¥ = ([—y1,y2],0) with

y1,y2 > 0, o y—z, o y—l, there is Z = ([—21, 22],0) such that Y = X ¢ Z.
T2 Y1 T2 Y2
i) 1 X1 3 . .
Example. X = ([—4,2],0), Y = ([-2,3],0). We have — = 3 o = 2 and 3 < 2 < 6. Then Z exists and it
X1 xro
8 2

is equal to Z = ([_E’ E],O).
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4.3.3 An Euclidean division

Consider X = ([z1,22],0) and Y = ([y1, y2],0) in TR". We have seen that Y is divisible by X as soon as

x x
= > y—l. We suppose now that =L« 2L 1n this case we have
T2 Y2 T2 Y2

Theorem 36 Let X and Y be in R with al < n There is a unique pair (Z,R) unique in TR" such that
T2 Y2

Y=XeZ+R,
I(R) =0 and ¢(R) minimal.

This pair is given by

Proof. We consider Z = ([z1, 22],0) with 21 > 0. Then Y = X ¢ Z + R gives

R = ([y1,y2]; [z121, 2222]).

We have R € m+ if and only if 0 <y; —x121 < yo — 229 that is

21 S &7
€Ty
22 S %a
T2 i
— Toz
2 > Y1 — Y2 2 2-
T
_ Toz _ _
The condition z; < z5 implies YL~ Yo F TaZp < z5 that is z9 < u. Consider the case z9 = u.
X1 To — T1 T2 —T1
_ Toz _
Then z; > YL~ Y2 + T2 _%7un _ zo and 21 = 2. This case corresponds to
1 T2 — T1
Y2 — Y1 77
Z=>""—"-([1,1],0),
2 (1)
Ty — T P
R = T2~ Tiy2 (L, 17,0).
T2 — T1
T
Let us note that yyx2 — x1y2 > 0 is equivalent to g1 > L which is satisfied by hypothesis. We have also for
Y2 T2
Tol1 — T
this solution I(R) = 0 and ¢(R) = 201 7 T2
Iy — 1
T _ _
Conversely, if [(R) = 0 then y;3 —z121 = y2— 2222 and 21 = z2—2+w. As z; > 0, we obtain zo > n=y2
z1 x1 Z1

and z; < z9 implies
Y2 — Y1 <z < y2—y1_

T2 T X9 — T
But ¢(R) = y1 — 2121 = y2 — 22x2. Thus
T2Y1 — T1Y2
—7 " TT < e(R) <Ly,
Ty —21 (R) <wn

T2Y1 — T1Y2

The norm is minimal when ¢(R) =
T2 — T
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[\

Example. Let X =([1,4],0) and Y = ([1, 3],0). We have o< &

1 1 _—
- = —. Thus Z2 = =([1,1 d
2 - 5 Thus 2 = ~([L,1,0) an

w

R = 5([1 1],0). The division writes

(IL30) = (LA,0)- (5. 51.0) + (I3 5. 0)

Suppose now that X and ) are not invertible, that is X = ([—z1,22],0) and Y = ([—y1,y2],0) with
21,22, Y1, Y2 positive. We have seen that Y is divisible by X as soon as

x x
Lo 2 a2 52

—_ >

€2 'A% ) Y2
or

x x

=< 2] and = < &.
T2 1 €2 Y2

‘We suppose now that these conditions are not satisfied. For example we assume that

—_ > % nd ﬂ < &

T2 N T2 Y2
(The other case is similar). If Y = X @ Z + R then R = ([—7r1,72],0) with r; > 0 and with ro > 0 because
D(R) = (0,72,71,0). This shows that we can choose Z such that B(R) = (0, 22, 23,0) and

_ x1(y1 7“1) - $2(y2 - 7”2)

x? — 13 ’

o 92—7”25—302 y1—7“1)

23 = 1‘2 *562 )
1 2

with the condition zo > 0 and z3 > 0. If 21 < x5 then this is equivalent to
z < Y2 — T2

)

T2 Yyp—n

x1 Yy —mn
<

Z2 Y2 — T2

If we suppose that R < Y, thus 0 < r3 < y9 and 0 < r; < y1, we obtain

T3 —ZToYy2 + T1Y1 T T2Y1 — T1Y2

> —rgt —————= < < —rg  ———,
T1 T1 x2 Z2

T1Y1 — T2Y2
Z1

Then length I[(R) = r1 + r2 is minimal if and only if 7o = 0 and in this case r = . We obtain

{ Z92 ZO,
Y2

zZ3 = —.
x

Theorem 37 Let X = ([ Z1,22],0) with 1,29 > 0 and 1 > x2. If ¥ = ([—y1,¥2],0) with y1,y2 > 0,

satzsﬁes — > 92 d < @ there is a unique pair R,Z of non invertible elements such that

X2 n T2 yz
I(R) minimal,
R <.

This pair is given by

Y
Z= ([7;ja0]30),
([_ T1Y1 — T2Y2

€

R

,01,0).
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4.4 Applications

4.4.1 Differential calculus on IR

As@ is a Banach space, we can describe a notion of differential function on it. Consider &y = (Xo,0)
in IR . The norm |[[.|| defines a topology on IR whose a basis of neighborhoods is given by the balls
B(Xo,e) ={X € IR, ||X \ A|| < €}. Let us characterize the elements of B(Xy, ). Xy = (Xo,0) = ([a, b],0).

Proposition 30 Consider Xy = (X,0) = ([a,b],0) in IR and e ~ 0, € > 0. Then every element of B(Xo, )
is of type X = (X,0) and satisfies

I(X) € Br(l(Xo),e1) and ¢(X) € Br(c(Xo),e2)

with €1,e9 > 0 and €1 + €3 < €, where Br(z,a) is the canonical open ball in R of center x and radius a.

Proof. First case : Assume that X = (X,0) = ([z,y],0) . We have

XNX = (X’XO) = ([x,y],[a,b])
_ { ([z = a,y = 0],0) if I(X) > 1(Xo)
(0,]a —z,b—y)) if I(X) <1(Xo)
If I(X) > 1(Xo) we have
I R R e

= UX) = UXo) + [e(X) — e(Xo)]-
As I(X) —1(Xo) >0 and |¢(X) — ¢(Xop)| > 0, each one of this term if less than e. If I(X) < 1(Xy) we have
1€~ || = U(Xo) = 1(X) + [e(Xo) — e(X)].

and we have the same result.

Second case : Consider X = (0, X) = ([z,y],0) . We have

AN =0,X0+X)=([z+a,y+1])

and
[[X N Xol| = U(Xo) + U(X) + [e(Xo) + c(X))].

In this case, we cannot have [|X \ Ap|| < e thus X ¢ B(X,¢).

Definition 38 A function f: IR — R is continuous at Xy if

Ve > 0,3n > 0 such that ||X \ Ap|| < n implies || f(X) N f(Xo)|] < e.
Consider (X1, X>) the basis of IR given in section 2. We have
F(X) = Fi(2)2: + f2(X) X, with ;TR — R.

If f is continuous at Xy so

F(X) N f(X) = (f1(X) = f1( X)X + (f2(X) — fa( D)) Ao
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To simplify notations let oo = f1(X) — fi1(Xp) and 8 =f2(X) — f2(Xo). If ||F(X) N f(XD)|| < e, and if we
assume f1(X) — f1(Xp) > 0 and fo(X) — f2(AXp) > 0 (other cases are similar), then we have
Z(aX1 + 5‘)(2) = l([ﬁv o+ 6]) 0) <e
thus f1(X) — f1(Xp) < €. Similarly,
o

claX; + 8Xs) = ¢([B,a + 5],0) = 5 +B<e

and this implies that fo(X) — fo(Xp) < e.

Corollary 39 f is continuous at Xy if and only if f1 and fo are continuous at Xj.

Examples.

e f(X) = X. This function is continuous at any point.

o f(X)= X2 Consider Xy = (Xo,0) = ([a,b],0) and X € B(Xy,e). We have

(RNl [1(X &) (X + o)

< 1A N Xl|[|X + Aol|.

Given € > 0, let n = thus if ||X \ Xp|| < n, we have ||X% \ X§|| < € and f is continuous.

9
1 + ||’

e Consider P =ap+a1 X +---+a, X" € R[X]. We define f : IR — IR with f(X) = agXs +a ;X +---+
aX™ where X" = X - X"~! . From the previous example, all monomials are continuous, it implies
that f is continuous.

Definition 40 Consider X, in IR and f : IR — IR continuous. We say that f is differentiable at Xy if
there is g : IR — IR linear such as

1F(X) N (&) N g(X ~ AD)[| = o([|X ~ Aol])-

4.4.2 Study of the function ¢

We consider the function g, : IR — IR given by

 (@EEwiecassy,
¢2([a,8],0) =3 ([1?,0%,0) if a < b <0,
([0, sup(a?,b?)]) if a < 0 < b.

and q2(0, [a,b]) = ga2([a,b],0). For any invertible element X € IR, we have go(X) = X e X. If X is not
invertible, it writes X = ([a, ],0) with a < 0 < b ( we assume that X is of type (K,0)). In this case X X
= ([2ab,a? + b?],0) and g2 C X oX .

Proposition 31 The function gy is continuous on IR.

Proof. Let X € IR. Assume that Xy = ([a, b],0) with 0 < a < b. An 1 -neighborhood is represented by the
parallelogram (A, B,C, D) with A = (a — g,b+g), B=(a—n,b—n),C= (a+g,b— g), D= (a+n,b+n).

We have q2(Xp) = X2 = ([a2,b2],0). For any € > 0 we consider the e-neighborhood of g2 (Xp). it is represented
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by the parallelogram (A;, By, Cy, D1) with A; = (a® — %,b%—g), By = (a®—¢,b?—¢),Cy = (a2+§,b2— g),
Dy = (a® +&,b + ¢). If n satisfy
2an +1n* < %
n? — 2an > <
2

the for every point of the n-neighborhood of Xj, the image ¢2(X) is contained in the & -neighborhood of
q2(XD). If a # 0, as ¢ is infinitesimal we have n = 8i If a = 0, we have n = €. Then ¢o is continuous at the
a

point Xp. Is Xy = ([a, b],0) with a < b < 0, taking n = _8£ we prove in a similar way the continuity at Ajp.
a

Assume that Xy = ([a,b],0) with a < 0 < b then ¢2(Xp) = ([0,sup(a?,b?)]). If X = ([z,y],0) is an -
neighborhood of Xy with g2(X) = ([0, sup((z + )2, (y +7)?)]) thena —n <z <a+n,b—n <y <b+n and
we can find 7 such that sup(a?, b?) — % <sup((z+n)?, (y+n)?) < sup(a?,b*)+ % Thus ¢ is also continuous

in this point. As ¢2(0, K) = ¢2(K,0), we have the continuity of any point.
Theorem 41 The function qs is not differentiable.

Proof. The function g¢s is differentiable at the point Xy if there is a linear map L such that

|lg2(X) \ ga(Xo) ~ L(X ~\ Ap)||

=0.
||~ Xo||—0 X~ Aol

We consider L be the linear function given by

L(X) =2Xy o (X).

We assume that Xy = ([a,b],0) with 0 < @ < b. If X is in an infinitesimal neighborhood of Xy, then
X = ([, y],0) with 0 < x < y.

e If0<z—a<y—>b

XN Ao = ([z, 9], [a,b]) = ([x —a,y — 1],0)
Thus L(X ~ Xy) = 2([a,b],0) e ([x — a,y — b],0) = 2([a(z — a),b(y — b),0) and

02(X) ~ g2 (Xo) N L(X N &) = ([22,92],0) ~ ([a?,0°],0) \ 2([a(z — a), b(y — b), 0)),
([22 = a?,y* = 1?],0) \ 2([a(z — a), b(y — b), 0]),

([(z = a)?, (y = b)?],0).

We deduce
-0+ (z—a)
1022~ @(X) S LY )| = (3= b2 — (2 — a2 | L2 2O
_3(y—b)?—(z—a)’
= 5 .
Thus
[lg2(X) ~ g2(Xo) N L(X N %)l _ 3(y —b)* — (v —a)?
||~ ol 3(y—0b) — (z—a)
Then [192(X) ~ a2(X0) ~ L(X ~ o)]] < ¢ is equivalent to

[~ Aol

3y —b)° —(z—a)’ <eBy—b) — (z—a)).

Then for every point of the e-neighborhood of A}, the € inequality of the differentiability is satisfied. This
shows that, if g9 is differentiable at Xy, then the differential is the linear function L(X) = 2X, e X.
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o If 0 <a—x < y—>b We find again the previous case.

o If0<y—b<a—uz, then

XN X = ([a:,y], [avb]) = ([x—a,y—b],()).

Thus L(X ~ Xy) = 2([a,b],0) e ([x — a,y — b],0) = 2([b(z — a),b(y — b),0) and

22(X) N @2(Xo) N L(X N X)) = ([22,4%],0) ~ ([a2,02],0) ~ 2([b(z — a), b(y — b)],0),
([z* = a?,y? = %], 0) ~ 2([b(x — a), b(y = b)],0),

([(z =0)* = (a = 1)% (y = 1)?],0).

We deduce ) ) )
llg2(X) ~ g2(Xo) N L(X ~ Xo)|| _ 3(y = b)" = (. —b)" + (a —b)
|1~ &ol| (y—b)+3(a—z)
X X, L(X X
Then [l92(X) ~ g2(%0) ~ L(X ~ Xo)] < ¢ is equivalent to

|4~ Aol

3(y—0)? —(z—b)?*+(a—b)? <e(y—b)+3(a—z).

We see that the representation of E doesn’t contains any points of the representation of a n-neighborhood
of &y for all 5. This gives a contradiction of the differentiability at Xj.

Remarks.

1. In a following work, we will study the differentiability of the function s : [R — IR define by s[a,b] =
[—b, —a]. This function is used in numerical approach. It is different of the function y — .

2. Some applications concerning linear problems in the vector spaces IR, such as reductions of matrices
of intervals, eigenvalues, eigenspaces, are studied in [31].

3. Non-linear simplex methods using interval analysis and linear algebra of intervals is proposed in [37].
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Chapter 5

Linear Alg_ebra in the vector space of
intervals IR

In the previous chapter, we have given an algebraic model to the set of intervals. Here, we apply this model
in a linear frame. We define a notion of diagonalization of square matrices whose coefficients are intervals.
But in this case, with respect to the real case, a matrix of order n could have more than n eigenvalues (the
set of intervals is not factorial). We consider a notion of central eigenvalues permits to describe criterium of
diagonalization. As application, we define a notion of Exponential mapping.

5.1 The module gi(n,R)

Let gl(n,IR) be the set of square matrices of order n whose elements are in IR. A matrices of gl(n,IR) is

denoted by
A= (X;)

ij=1,n

with X;; = (K;;,0) or (0, K;;). It is clear that gi(n,IR) is a real vector space. We define a product on it
pouting
A-B=(X;)(Yi;) = (Z;)

n PR _
with Z;; = >~ Xjj-Yy;. This last product being the associative product on IR. Thus gl(n, IR) is an associative
k=1

algebra.

Definition 42 A matriz A € gl(n,IR) is called invertible if its determinant, computed by the Cramer rule,
is an invertible element in IR.

Recall that the group IR of invertible elements contain
Xi = (KMO) or (OvKl)

with 0 ¢ K;. To compute the determinant, we use the classical formula of Cramer.

Example 1. Let us consider the matrix

v=( 5% L)
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Thus
det By = ([1,2],0)([1,2],0) ~ ([-1,3],0)([-1,3],0)
= ([174]a0) ~ ([—3,9]70)
([07 [_475])
\([_4a 5]70)

As ([—4,5],0) is not an invertible element of IR, the matrix B is not invertible.

Example 2. Now if

m=(5% 05

then, by the similar computation, we obtain
det By = ~([-7,—4],0)

and Bs is invertible.

Definition 43 If A is an invertible matriz on gl(n,IR), the inverse matriz A= of A is given by

A-A'=1d
where
1 0 0
0 1 0
Id = .
0 0 1

with 1 = ([1,1],0) and 0 = (]0,0],0).
The determination of A~! can be computed using the classical rules.

Example. If we consider the invertible matrix Bs, we obtain

L 11 [1’7} \[—1.3]
By' = [7,4]( ~[-1,3]  [1,2] )

Let us verify that BgB{l = Id. Using the product on IR we obtain

L1 2] -1 1,7  ~[-1.3]
BBy _[7’4]([—1,3] [1,7) ) <\[—1,3] 1,2] )

The coefficient in place (1,1) is

an = [z, Z]((L2)[1, 7] + [-1.3] (N1, 3]).

11
air = (?7Z’O?O)((LQvOaO)(la77070) - (07371a0)(0337170)

11

= (?71?050)((17147070) - (07 107670))
11

- (?717030)(1747763(”
11

- (?7170a0)(7747070)

= (1,1,0,0)

which corresponds to [1,1]. Similarly we have aja = az; = (0,0,0,0) and agy = (1,1,0,0). Thus By By * = Id.
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5.2 Diagonalization

5.2.1 Eigenvalues and central eigenvalues

Let A be in gl(n,IR). An eigenvalue of A is an element X € IR such that there exists a vector V # 0 € IR
with
Aty=x"ty.

Thus X is a root of the characteristically polynomial with coefficients in the ring IR
CA(X) = det(A — XI) =0.

Example. Let

_( L,2] [1,2]
By = < [1,3] [2,5] )
‘We have TN 2]
B?’_XI:( ’[1,3] [2,5}’\2()
and
det(Bs —XI) = ([1,2]~ X)([2,5] ~ X) —[1,3][1,2]
= [2,10] = X[2,5] — X[1,2] + (\X)(\X) — [1, 6]

(NX)(NX) — X3, 7] + [1,4].
Let X = ([z,y],0). It is represented in A4 by (z,v,0,0) or (0,y,x,0) or (0,0,z,y) = —(z,y,0,0).
First case: det(Bs — XI) = (22,%,0,0) — (3z,7y,0,0) + (1,4,0,0) = (2% — 3z + 1,y — Ty + 4,0,0).

Then det(Bs — XT) = 0 implies
{ 22 —-3x4+1=0,

y2_7y+420a
that is
31\[
7if
2
We obtain \[ \ﬁ
= (22 TS )
= (122 f”f] 0),
= f,7 QWLO)

Second case: det(Bs—X1) = (0,y%+22,22y,0) — (0, Ty, 7z,0) + (1,4,0,0) = (1,y> + 22 — Ty + 4, 22y —
7x,0). Then det(Bs — XI) = 0 implies

1—-2zy+ 72 =0,
Y 4+ a?—Ty+4=0.

This gives
4y* — 563 + 261y> — 455y + 197 = 0.

We have the following solutions
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We obtain the eigenvalues
Xy = ([-2,8, 3.32],0),
Xs = ([-0.17, 0.63],0).

Third case: det(B; — XI) = (¢2,42,0,0) + (3z,7y,0,0) + (1,4,0,0) = (22 + 3z + 1,52 + Ty + 4,0,0).
Then det(Bs — X'I) = 0 implies
Lo 3% V5

2
=T E£v33
-—F
then

KXo = ([_3 ; \/57 _7_‘_2@]’0)'

We obtain six eigenvalues.

Remark. To compute the interval-eigenvalues of a matrix A, we have to find the roots of the character-
istically polynomial of A. But this polynomial is with coefficients in TR (or .44) and this set is not a field
neither a factorial ring. Then it is natural to meet some special results (e.g if we consider the second degree
polynomial X2 —1 with coefficients in % which is not factorial, it admits four roots,1, 3,5, 7.) In our example
we finds 6 roots. Now if we consider the real matrix whose coefficients are the centers of interval-coefficients

of Bs, that is
1.5 1.5
s =\ 2 35

then the eigenvalues of cp, are 4.5 and 0.5 which are closed to the center of &} and A&5. We call these
eigenvalues, the central eigenvalues.

Definition 44 Let A be a matriz in gl(n,IR). Lat A, be the real matriz whose elements are the center of the
intervals of A. We say that an eigenvalue of A is a central eigenvalue if its center is (close to) an eigenvalue

of A..

Remark. The determination of negative eigenvalues that is of type (0, K) is similar. Nevertheless we have
to consider only matrices with positive entries thus we studies only the positive eigenvalues. The negative
eigenvalues do not correspond to physical entities.

5.2.2 Eigenvectors, eigenspaces
Now we will look the problem of reduction of an interval matrix. Recall that the characteristically polynomial

is with coefficient in a non factorial ring. This is the biggest change with respect the classical real linear
algebra.

Definition 45 Let A a square matriz with coefficients in IR. If X is an eigenvalue of A, then every vector
Ve IR" satisfying AYY = X'V is an eigenvector associated with X.

Let E» be the set
Ex ={V € IR" such that A"V = x*V}.

Then Fy is a R-subspace of IR" where n is the order of the matrix A. It is also a IR submodule of IR ".

Proposition 32 Let Xy and Xy be two distinguish eigenvalues of A. Then Ex, N Ex, = {0}.
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Proof. Let V be in Ex, N Ex,. We have

AV = Y,
AV = ).

This X1V \ ALY = (X \ A2)V = 0. As IR is without zero divisor, we have Xy ~ X, = 0 or V = 0. We
deduce Ex, N Ex, = {0}.

Proposition 33 Let C4(X) be the characteristically polynomial of A. If the real polynomial Cc, (X) asso-
ciated with the central matriz of A is a product of factor of degree 1, then Cx(X) admits a factorization on
IR

We have seen that C'4(X) can be have more than degree(C4(X) roots. If Xy, --- , X, are the central roots,

we have the decomposition
n

Ca(X) = an [J(X ~ ).

i=1
Example. If we consider the matrix
_ (L2 [1,2]
Bs = ( 1.3 2,5 )
then Cp,(X) admits Xy, --- , Xs as positive roots. The central eigenvalues are X; and X3 and we have

det(Bg N XI) = (X N Xl)(X N Xg)

3—vV5 T+ +v33
If we consider the roots X = (| 2\[, +2 ],0), and if we assume that Cp,s(X) = (X N\ ) (X \Y),
we obtain
3—Vv5 7 33 3 5 7T—+33
v = (ar B TEVE BB TV

which does not correspond to a positive eigenvalue.

Theorem 46 For any n-uple of roots (X1, -+ ,X,) such that C4(X) = ay, [[ (X N\ &,), and if for any i =
i=1

i
1,---,n the dimension of Ex, coincides with the multiplicity of X;, then we have the vectorial decomposition
R" = @icrEx, where the roots X;,i € I are pairwise distinguish.

Example. Let us compute the eigenspaces of Bs associated to the central eigenvalues.

3+4V5 T+33
.Xlz([ 2 ) 2 ]70)'
Let V = ( “;1 ) e IR. Then
2

is equivalent to

0.2 BB a0 0
(13.0% 0. (P8 BB,

2 ’ 2
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that is
1+v5 3433
NI 2\[7 5 Vi +11,2]Va =0,
-1 5 —34++/33
L3y, [CLEVE 3V,
2 2
This gives
1++v5 3++33
[ 2 ' 9 Vi
Vo = .
1,2]

If we choose V7 = ([1,1],0) we have

2 = 213
—14++v5 —3++33 _
= = Jo (N[-1,5)

= \([_MT\/@?_%])

Thus the X;-eigenvectors are of the form

Remark. We can choose V; such that all the coordinates of V' are positive. For example if V; = [1,2] then

. ([1,2],0)
= ([1+\/5 3+\/§LO)

2 2
3—vV5 7—/33
.XZ’):([ 2 s 9 ],O)
Let V = ( gl ) € IR. Then
2

is equivalent to

(T BB o (20w 0
(130 (L2 3 gy
that is
T BBy v =0,
L3vi + [ *2@ —3+2¢§]V2 o,
This gives
N e e ]

[1,2]
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If we choose V7 = ([1,1],0) we have

[—1+\f—3+\/§]
V2 = 21
—14++v5 —3++/33 N
= N Jo (N[-1,51)
= ([B=38, 1=8))

5.3 The Exponential map

We define the exponential map o o
Exp : gl(n,IR) — gl(n,IR)

in a classical way by series expansions. If the matrix A is diagonalizable, then
D=P'AP

is diagonal and Exp(A) is a diagonal matrix whose diagonal element are the exponential of the eigenvalues.

Example. Let

_( [1,2] [1,2]
B (s b )
The central eigenvalues are
R RS )
X3 = ([3 _2\/5’ ! _Qm]vo)'
and we have o0
b= ( 0 X )
with
(Y o )
N[ R8T 0) ([P, 155,0)
We deduce
pentn)— P (eanY5), eop Y53 ) VR P
0 (lean(*="2), ean(=—"2,0))

In a forthcoming paper, we apply this calculus to solve linear differential system.
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Chapter 6

The arithmetic of infinitesimal
intervals

6.1 Introduction

The intervals arithmetic is used in many domains. For example, in the geometrical conception of a robot.It
is necessary to look if the set of parameters does not contain some singularities. If we have to consider some
local minimal points, thus the system depends weakly of initial data. The problem of conditioning of a robot
can be approached by intervals arithmetic. A second important area of applications are problems where
one are obliged to take into account of some uncertainty. These appear when the parameters are not in a
reality given by real number (e.g the temperature, the degree of humidity..). Then the parameter have to be
substituted to an infinitesimal intervals containing all the possible values of the parameter. This appear too
in a computer calculus. A real number is not represented by a element of the real field but by an interval.
If the calculations are long or recurrent, it implies an accumulation of mistakes In this chapter we present a
study of infinitesimal intervals based :

1. On a non standard approach of infinitesimal numbers.

2. On the algebraic model of the set of intervals developed in the previous chapters.

6.2 Infinitesimal numbers

6.2.1 What are infinitesimal numbers

In 1964, A.Robinson [57] proposed a non archimedean extension of field, denoted by R*, of the field R of
real numbers permitting to obtain a notion of infinitesimal numbers from their natural property

a~0<=|a| <z for any z € R

where ~ 0 means infinitesimal. Such an element « ~ 0 belongs to R* — R. We note that this relation on
R has no sense. In fact, the relation || < z for any z € R implies o = 0. This is a consequence of the
archimedean property of R*. And R doesn’t contain infinitesimal elements except zero, infinitesimal can
be understood in the natural sense, a number smallest that all the classical numbers. With the Robinson
extension, one sees that infinitesimals belong to R* — R. The elements of R* which belong to R are the
standard numbers, that is numbers constructed by standard process. Moreover, R* appears as the smallest
extension of the field R which contains infinitesimal numbers. Thus, all writings concerned by the classic
infinitesimal calculus express themselves very merely in Robinson’s extension. One can hope therefore that

73
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the use of the infinitesimal numbers facilitates the calculations. For example, classically, we have to use three
quantificators to express that f is derivable at xy with derivative equal to a:

(z) = f(o)

V£>O,Eln,Va:,|a:—x0|<77:>|f = | <e
— I

Using infinitesimal numbers, the same identity writes:

f(zo+¢) = flzo)

e

|~ a.

6.2.2 Characteristically properties of R*
1. R* is a non-archimedean field that is
Ja,b € R*,VYn € N,na < b

containing R as a subfield.

2) R* is a valued field. It exists a valuation v on R*, that is a map
v:R* — GUx
where G is an totaly ordered abelian group, satisfying

v(zy) = v(z) +v(y),
v(z +y) = min(v(z), v(y)),
v(z) =00 <=z =0.

We denote by L the associated valuation ring, that is
L ={x e R*v(z) > 0}.
It is a local ring admitting an unique maximal ideal m

m = {z € R*;v(x) > 0}.

3) Let m be the maximal ideal of the local ring £. The quotient ring é is a field ( because m is

maximal) isomorphic to R satisfying

reER — L=z em.

If we interpreter the elements of R* — £ as infinitely large elements, the previous relation means that
x is an infinitely large element if and only is the converse 2~ is infinitesimal. For the reasons L is
called the ring of limited numbers (limited is synonymous with not infinitely large) and m the ideal
of infinitesimal numbers.

Remark. E. Nelson, in 1976, proposed another approach of infinitesimal numbers, called IST and based on
a conservative extension of the theory of sets from the axioms of Zermelo-Fraenkel. In this framework the
infinitesimals are elements of R and the classical real numbers are expressed by a predicate ”standard”. This
approach is undoubtedly attractive. But contrary to what claim The adepts to this approach, this theory is
relatively complicated. Proof is that all articles using IST, devotes a third of their contents to recall what
the IST is. We prefer to stay here in the algebraic approach proposed by Robinson.
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6.2.3 Operations in the field R*

Practically, in R* we have two types of elements: the elements of R, called standard and the elements of
R* — R called of course non standard. Among the elements of R* we have

e the elements of £, called limited or not infinitely large (all standard element is limited).
o the elements of m called infinitesimal.

e the elements of R* — L called infinitely large.
Thus we find again the classical Leibniz rules:

e limited + limited = limited

e limited x limited = limited

e infinitesimal x limited = infinitesimal

e infinitesimal + infinitesimal = infinitesimal
e 1/infinitesimal = infinitely large

e infinitely large x (limited not infinitesimal) = infinitely large.

6.2.4 Relation between R* and R

The most important property that joins the field R and its extension R* is the following : let us consider a
non infinitely large element o € R*, that is a € £. Then, there is a unique element a € R such that

a—aeEem

that is this difference is an infinitesimal number. It is clear that, if @ € R, thus a = a. This number a is
classically denoted by °a. The map
°:L—-R

is a surjective R-linear map and a ring homomorphism.

If f is a real-valued function of a real variablex € R, defined on an open interval ]a,b[, on passing in R*,
f(z) is extended to a function which is defined for all number z € R* such that a < z < b. Usually we
denote by the same letter the initial function and its transferred. For example, a function f(z) is continuous
at the point zy € R, if and only if the transferred function satisfies

f(@) = f(xg), Vo~xg, xR,

where x ~ xg means x — xg € m.

6.3 Arithmetic of halos

The notion of halo corresponds to a general infinitesimal neighborhood of a point a € R. In this section we
shall construct an arithmetic on the set of halos analogous to the arithmetic of intervals.

Definition 47 Let a in R. The halo of a denoted by h(a), is a subset of R* defined by
h(a) =a+m

where m is the mazximal ideal of infinitesimals.
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Thus for any point o € h(a) we have

and

Let H be the subset of P(R*) whose elements are the halos of elements of R. We define of H the following
operation
h(a) + h(b) = h(a +b), Ya,b € R,
{ Ah(a) = h(Aa), Va,\ € R.

This addition is associative and commutative. It has an identity element h(0) = m because h(a)+h(0) = h(a).
Then we have

Proposition 34 The set ‘H is real vector space.

As h(a) = ah(1), this space is of dimension 1. If we put ||h(a)|| = |a|, we endow the space H of a normed
complete vector space.

We can define also an internal multiplication on H , putting :
h(a)h(b) = h(ab).

This multiplication is distributive and the vector space with this multiplication is an algebra (and even a
field ) isomorphic to R.

Proposition 35 The external multiplication
(A h(a)) € L x H+— h(°Aa).
endows the abelian group H with a L-module structure.

This module is finitely generated and of rank 1. In fact any element h(a) is written h(a) = ah(1). But this
module is not free. In fact we have eh(1) = h(0) = m. For any n € N, n # 0, the module

H" ={h(a), a € R"}.

is isomorphic to the cartesian product n times of H is a finitely generated L£-module of rank n. But this
module is not free. This structure have been studied in [58] and called neutrices.

6.4 Infinitesimal intervals

6.4.1 The module Z

The notion of halo of a point a in R corresponds to a general notion of infinitesimal neighborhood. That
amounts to give a real number a up to an infinitesimal incertitude but in some problems the data are given
with a precise incertitude. In this case the real datum belong to an interval of the type [a — ¢,a + ¢] with &
infinitesimal, € > 0. Thus we have to define an arithmetic of the sets of such intervals.

Let a € R C R*. We denote by I,(g) the interval [a — €, a + €] in R* with e € m , and by Z the set
T ={I,(¢),a € R,e € m}.

We put
I, (e1) + Iy(e2) = Ioyp(e1 + €2).
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This operation is associative commutative and Iy(0) is an unit. Thus Z is a semi-group. Following the
approach developed in the previous chapter, we construct a natural vectorial structure on the symmetrized
T of the regular semi-group (Z,+). Recall that 7 is the quotient set associated with the equivalence relation

(Za(€1), Io(e2)) ~ (Lc(es), La(es)) <= La(er) + Lales) = Iy(e2) + Le(es).
We denote by
({a(e1), I(€2))

the equivalent class of

(La(€1); In(e2))-

In particular the class of (0,0) is
(0,0) = {(I.(e), I(€)),a € R,e € m}
where 0 is the interval [0, 0]. In this context we can define the opposite of (I,(e1), Ip(e2)) by

N(Laler); In(e2)) = (Ip(€2), La(er))-

This gives

(a(e1), In(e2)) \ (Lc(e€s), La(€a)) = (La(er) + La(ea), (1e(e3) + Ip(e2)).

This defines a structure of abelian group on Z and every element of Z writes (I,(¢),0) or (0, I,(e)).

Theorem 48 The group T is provided with a structure of R-vector space and of L-module.

Proof. We have seen that 7 is an abelian group for the addition. Let A € £. We put

A(Ta(6),0) = (Ira(Ac). 0)

1) If x> 07{ )\(07Ia(6)) = (Oi\lka()‘e))
AMIa(9,0) = (0. Tra(-A)

2) If A< O; { )\(O7Ia(€)) = (I-)\a? )‘6)70)

We deduce

(=1)(a(€),0) = (0, La(€)) = ~(La(€), 0).
The external multiplication verifies the axioms of modules. If we restrict the scalar A to R (recall that R in

included in £), we obtain the structure of R-vector space on Z. But the dimension of this real vector space
is not finite.

6.4.2 Decomposition of an infinitesimal of R*".

Theorem 49 Let (e1,--- ,€,) be n element of m. Then there are k linear independent vectors in R™, k < n,
such that

(€1,- ,€n) = a1Vi+a1aaVo+ - +ag -V
with c; € m—{0}. This decomposition is unique if we assume that the frame {Vy,--- ,Vi} is an orthonormed
frame.

Let’s examine the particular case n = z. The decomposition of (1, €2) writes
(€1,62) = V1 + arazVa

with a; ~ 0. If V5 # 0, then (V1,V3) are linearly independent. If we put Vi = (v1,v2) and Vo = (w1, ws),
the decomposition is equivalent to

€1 = Q1V1 + Q1 2wy,

€ = (X1V2 =+ a1 W3,
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. €1 . . or
If vyve # 0, thus the quotient =L is a an infinitesimal number and
€2

(Gy=2

€2 V2 '

In this case, we shall said that ¢; and e are equivalent. If vyvs = 0, for example if vy = 0, then

€1 = q1V1 + 1wy,
€ = X1 2W2.

In this case

€2 Q10w w2
—_— = = 2
€1 QU1 + 1wy v1 + aawy
€2 €2 . . .
and °(—) = 0. Thus — is infinitesimal.
€1 €1

6.4.3 Equivalent infinitesimal intervals
If 1,(¢) € Z, we denote by J,(€) the class in Z of (I,(€),0). Thus \J,(€) is the class of (0, I,(e)).
Definition 50 Let J,(e1) and J,(e2) be in Z. They are called equivalent if the decomposition
(€1,€2) = a1Vi + ar1azVs
with a; € m — {0} and Vi = (v1,v9) satisfies vivg # 0.
This relation is an equivalence relation. We denote by Z the quotient set and J, () the class of J,(¢). Thus
Ja(e) ={(la — e1,a + @1, 0), &1 = pre + e’ with py € R —{0}}.
Proposition 36 The quotient set T is a R—vector space and a L—module.

Proof: In fact the addition is given by J,(e1) +Jy(€2) = Jats(€1 4 €2). The unitary element is Jo(0). If b € R,

we put
b (e) = Jva(€) 1f.b >0,
e (€) if b < 0.

Thus 7 is a R—vector space. If p € L, we put

pJa(e) = %pa(e).lfp>0andp¢m,
Jo(pe) if p> 0 and p € m.

If p < 0, we use the signs rule. This product provides 7 with a £-module structure.

6.4.4 A multiplication in 7
To define a multiplication distributive with respect the addition, we use the product of .44 (see Chapter 4).
Assume that ¢ <0, e € m.

e If ¢ > 0, thus
[a—e,a+¢] =(a—e)e; + 2eeq.

e If a <0, thus
[a—e,a+¢] = (—a—e¢)es + 2ee3.
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A direct computation of the multiplication gives
1. Ifa>0, b>0,

[a—e1,a+¢e1][b—ea,b+e3] = ((a—e1)er +2e1e3)((b—ea2)er + 2eqe9)
= (a—e1)(b—e2)e1 + 2(aea + beq)es
= [ab —aeg — bey +e169,ab + agg + bey + 8162].

2. Ifa>0, b<O,

[a—ce1,a+e1][b—ea,b+e3] = ((a—e1)er +2e1e3)((—b — e2)eq + 2e2e3)
= (a — El)(—b — 62)64 + 2(&62 — b51)€3
= [ab — ags + bey + 169, ab + aey — bey — €163).

3. Ifa<0, b<0,

[a—e1,a+e1][b—ea,b+ea] = ((—a—e1)eq+2e1e3)((—b— e2)eq + 2e2e3)
= (—a — E1)(—b — 62)64 + 2(—&52 — bé‘l)eg
[ab + aeg + bey + €162, ab — aga — bey + €169].

Each one of these results do not belong to 7.
The product of first approximation. Let us consider the decomposition of (g7, e3):
(€1,€2) = a1V + arazVs

with «; >~ 0 and if V5 # 0, then the vectors (V4,V3) are linearly independent. If we put Vi = (v1,v9) and
Vo = (w1, ws), the decomposition is equivalent to

€1 = Q1V1 + Q1 Q2W1,
€9 = (V2 + 1o Ws.

As we assume that ¢; > 0 for ¢ = 1 and 2, the infinitesimal elements «; also are positif. Likewise, the
components of the vectors V; are not negative. Let us examinate each one of the previous case

1. Ifa>0, b>0,

agq + bey = ag(avy + buy) + ajas(aws + bw)

and p = avy + bvy = ((v1,v2), (b, a)) > 0 where (V, W) is the classical inner product on R?.

Definition 51 If a > 0, b > 0, the product of first approzimation of the infinitesimal intervals [a —
e1,a+¢€1] and [b—e2,b+ &3] is

[a—e1,a+e1].[b—e2,b+e3] = [ab— ayp, ab+ a1p)
where p = avy + bvy = ((v1,v2), (b, a)).

2. Ifa>0, b<0,

agy — bey = ag(avy — buy) + ajaz(aws — bwy)

and p = avz — bvy = <(’U17/02)7 (_b7 a)) > 0.

Definition 52 Ifa > 0, b < 0, the product of first approxzimation of the infinitesimal intervals [a —
er,a+e1] and [b—e9,b+ e9] is

[a—e1,a+e1].[b—e2,b+ €3] = [ab — ayp, ab + a1p)

where p = avy — bvy = ((v1,v2), (=b,a)).
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3.Ifa<0, b<0,

—agg — bey = ag(—avy — buy) + s (—aws — bwy)

and p = —ave — buy = {(v1, v2), (—b, —a)) > 0.

Definition 53 If a < 0, b < 0, the product of first approzimation of the infinitesimal intervals [a —
e1,a+¢e1] and [b—ea,b+ g9 is

[a —e1,a+e1].[b — e2,b+ e2] = [ab — a1p,ab+ a1p]

where p = —avy — bvy = ((v1, v2), (b, —a)).

The product of second approximation.

If the first approximation is too coarse, that is if the result gives one interval whose infinitesimal length is
too imprecise, it will be necessary to describe this length to an infinitesimal of order 2. We will precise this
notion. If the length of the interval is an infinitesimal e, this length will be given to an infinitesimal of order
2 if it is given by an infinitesimal ¢ 4 ec’ with &’ infinitesimal. For each of the three previous cases, we are
going to describe that produced of order 2.

1. Ifa>0, b>0,

[a—e1,a+¢e1][b—ea,b+e3] = ((a—e1)er +2e1e2)((b—e3)er + 2eq€e9)
=(a—e1)(b—e2)er + 2(aeq + beq)es
= [ab — agg — bey + €162, ab + agg + bey + £162).

But
€1 = U1 + 1oy,
€9 = 1V + 1 Q2Ws.
Thus
aey + bey + 169 = alaqvy + agasws) + b(a1v1 + araswi) + (a1v1 + agasw ) (@1ve + agagws)

= ay(avy + bvy) + aras(aws + bwy) + avivy + a2
with 6 ~ 0. Thus, if we forgot the infinitesimal a6, we have
agy + bey + 160 = a1p + agax(W, (b, a)) + aivyvs.
We have to compare the infinitesimals oy o and a% that is 1 and asy. For this we use the decomposition:

ay = Brvs + frfaws,
ay = B1vg + 1wy

with §; ~ 0 for ¢ = 1 and 2, and the vectors V5 = (v3,v4) and Wo = (w3, wy) are independent vectors
of R?. Thus
{ aray = (fozvy + 6761,
af = B{vi + B70e,
with 6; ~ 0 for : = 1 and 2. We deduce

a1p+ 011(0411]1172 + C¥2<W, (b7 (l)>)
a1p + oy (Brv1vavs + Brvg(W, (b, a)))
= aqp + a1 81 (vivavs + va(W, (b, a)))

agz + b61 + €169

Definition 54 If a > 0, b > 0, the product of second approximation of the infinitesimal intervals
[a —e1,a+¢€1] and [b—e3,b+ €3] is

[a —e1,a+¢e1].[b—e2,b+ 3] = [ab — €, ab + €]

where
€ = a1p + a1 fB1(vivavs + va (W, (b, a))).
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2. Ifa>0, b<0,

[a —e1,a+e1][b—e2,b+e2] = ((a—e1)er +2e1e2)((—b — e2)eq + 2e2e3)
= [ab — agy + bey + €169, ab + agg — bey — €183].

If we use the decomposition of the infinitesimal vector (a1, as), we obtain

Definition 55 If a > 0, b < 0, the product of second approximation of the infinitesimal intervals
[a —e1,a+¢e1] and [b— ea,b+ &3] is

[a —e1,a+€1].[b—e2,b+ e3] = [ab — €, ab + €]

where
€ = aq(avy — bvy) + a1 01 (—v1v2v3 + v4(aws — bwy).

3. Ifa<0, b<0,
[CL —€1,a+ 61][b —e9,b+ 52] = ((—a — 61)64 + 2&‘163)((—[) — 62)64 + 26263)
= (70, — 51)(71) — 82)64 + 2(7&52 — b€1)63

= [ab+ ags + bey + £169,ab — aey — bey + €1€2).

In this case, we can define the product by

Definition 56 If a < 0, b < 0, the product of second approximation of the infinitesimal intervals
[a —e1,a+¢e1] and [b— e3,b+ €3] is

[a —e1,a+€1].][b — e2,b+ €3] = [ab — €, ab + €]
where
€ = a1(—avy — buy) + a1 081 (v1vav3 — va(aws — bwy).
6.4.5 A distributive product in 7

The extension of the product of first or second approximation of Z to T makes itself like the extension of the
distributive product of IR to IR.

We have define the product of second approximation. It is clear that the process of decomposition of an
infinitesimal vector permits to define a product until an arbitrary approximation.

6.5 A global product

Let J(a,e1) and J(b, e3) € Z. We assume, in first time, that correspond to (J(a, €1),0) and (J (b, €2), 0).
First case: a > 0, b > 0. We put

J(a,el) o J(b, 62) = J(ab, agy + b&‘l).

We note that if (e1,e2) = a1 Vi + a1asVs, then as €1 and e are positive infinitesimals, the component vy
and vy are positive and not zero. We deduce that

ags + bey = alayva + ayasws) + blagv + ajasw)

where Vo = (wy,ws).Thus

aey + bey = ay(avs + buy) + oqoz;
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with a; em. As avg +bv; #0 (a > 0,b > 0,v1 > 0,v9 > 0,v1 # 0), then agy + be; are equivalent to a7 and

J(ab, ags + ber) = J(ab, ay).

Second case : @ > 0,b < 0.If u € [a—e1,a+¢&1] and [b—eq, b+ 3] then we can write u = a+ p1, v = b+ py
with —¢; < p; <¢; and ¢ = 1,2. We deduce

uv = (a+ p1)(b+ p2) = ab+ aps + bp1 + p1p2
and
—agz +bey < apy +bpy < agy — bey.

Then, as a and —b are positive, the infinitesimal —aeq + be; < apy + bp1 < aes — bey up to an infinitesimal
equivalent to e1e5. We put

J(a,e1) @ J(b,ea) = J(ab,aeq — ber) = J(ab, ay).
Third case : a <0, b < 0. The study realized in the first case permits to write

ju(—a,al) ° ,j;(—b7 €9) = j(ab, €1+ €2).

Fourth case:a = 0. If b # 0 we put

J(0,e1) @ J(b,eq) = J(0,beq).

If 5 = 0 then

J(0,e1) @ J(0,e2) = J(0, a1x2)

if v1v9 # 0, or B B B
J(0,e1) @ J(0,e2) = J(0, 04%042)-

To end the definition of this product we put

J(a,e1) @ (NJ(b,e2)) = \(J(a,e1) @ J (b, 82)) = (NJ(a,e1)) @ J (b, 22)

and

(NJ(a,e1)) @ (NJ(b,e2)) = J(a,e1) @ J(b,e3).

Proposition 37 This product is commutative and associative. Moreover J(1,0) is an unit for this product.

Let us_examine the distributivity of this product with respect to the addition. Let ,71, jg, jg, € 7. We put

J1 = j(a7€1)7‘]2 = j(bv 52)7‘73 = j(C, 63)'
1) If a, b, ¢ are positive, then
JlO(J2+J3):J10J2+J10J3.
2) Assume that @ > 0,0 > 0 and ¢ < 0. Then
Jo+ Js5 = j(b+c,52+63).

If b4 ¢ > 0, then

Jre(Ja+Js) = J(a(b+c), (b+c)er +alea +e3)),
JieJo+JieJs = J(abber +aco)+ Jy e J.
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But J; e jg, = j(ac, aes — ce1), thus
JyeJy+JyeJs=J(ab,ey(b—c)+ales +e3).
The decomposition of the infinitesimal vector (g1, e9,£3) writes:
(e1,€2,€3) = B1U1 + B182U2 + B18233U3

with 8; ~ 0 and {Uy,Us, U3} a standard orthonormed frame. As b — ¢ > 0, then (b+ c)ey + a(e2 + €3) and
(b — c)e1 + alez + €3) are equivalent to 8;. We deduce that

Jie(JotJs) = JieJy+ Jy e Js.

If b+ ¢ <0, then L _
Jie(Ja+ J3) = J(a(b+¢c),alea +€3) — (b+ ¢)eq).
In this case we also a(eg +e3) — (b+ ¢)e1 and (b — ¢)e1 + a(ez + £3) are equivalent to (1, thus
Jre(Jo+J3)=JyeJy+ Ji e Js
3) Assume that a > 0,b < 0 and ¢ < 0. Then
Jo+ Js = J(b+cez +e3)
and
Jie(Jo+Js) = Jlab+c),—(b+c)er +ales +e3)),

JieJo+Jied; = j(ab, —bey + agg) + j(ac, —ceq + aga),

= J(ab+ ac,—(b+ c)e1 + a(ea +€3),
= Jie(Jo+ Ja).

4) We obtain the same results for a < 0.

Theorem 57 The product e is distributive with respect the addition:
Jye(Jo+Js)=JyeJy+.JyeJs

for all jl, jg, jg el

Consequence: the triple (Z,+, ) is an (infinite dimensional) associative algebra.
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Chapter 7

Annexe: On Poisson algebras

7.1 Poisson structures on C[Xy,...,X,] and exterior calculus

7.1.1 Poisson bracket and differential forms

Let A, be the commutative associative algebra C[X7,...,X,]. A Poisson structure on A4, is given by a
bivector
P = Z Pi]&» AN 8]‘
1<i<j<n
where 0; = aixi and P;; € A, satisfying
[Pv P]S =0

where [,]g is the Schouten’s bracket. If A,, is endowed with a Poisson structure P, the multiplication given
by

{P,Q} =P(P,Q),
for any P,Q € A, is a Lie bracket satisfying the Leibniz identity
{PQ, R} = P{Q, R} + Q{P, R}

for any P,Q, R € A,.

We denote by S, 4 the set of (p, ¢)-shuffles where a (p, ¢)-shuffle is a permutation ¢ in the symmetric group
Sptq of degree p + g such that o(1) < 0(2) < --- < o(p) and o(p+1) < o(p+2) < --- < o(g). Given a
bivector P we consider the (n — 2)-exterior form

Q= Z (=) P,1)(2)dX o3y A+ A dX ()
0ES2 n_2

where €(0)) is the signature of the permutation o.

We assume that n > 3. Let o, .. the pfaffian form given by

'77;n73
ailv"‘ 7irz—3 (Y) = Q(ai176i27 e 787;”,375/)
where Y = > Y;0,,Y; € A,. If n =3 we put a = Q.

Theorem 58 A bivector P on A,, satisfies [P, Pls =0 if and only if

dail,.. AQ=0

“sin—3

for every iy, -+ Jin_3 such that 1 < iy < -+ <ip_3 <n.

85
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Proof. The integrability condition [P, P]s = 0 writes
Z POy Pjk + PrjOrPri + Prp0rPij = 0
r=1

for any 1 <1,j,k <n. But
Cvil’... Vin—3 — Z(—l)NijXm

the summand concerning the triples (4, k,1) where (j,k,41,...,1,...i,—3) is a permutation of S, _» and
N =¢(0) +p—3. Then

dO[il’... Gim_g = Z(_l)Ndek A Xm

and doy, .. A Q = 0 corresponds to [P,P]s = 0.

yin—3

7.1.2 Lichnerowicz-Poisson cohomology

We denote by Ap the algebra A, = C[X1,..., X,] provided with the Poisson structure P. Let x*(Ap) be
the vector space of k-biderivations that is of k-skew linear maps on A satisfying

O(P1Q1, Py, ..., Pr) = Pro(Q1, P, ..., Pr) + Qup(Pr, P, ..., Py)
for all Q1, Py, ..., Py € A. For k =0 we put x°(Ap) = Ap. Let 6 be the linear map
5% X" (Ap) — X" (Ap)

given by

51{:90(]317 PZ» ceey Pk+1) = Z'Ijill(_]‘)lil{PlvAw(Plv o Pia v Pk+1)}

+ El§i<j§k+1(_1)z+1(p<{Pia Pj},Pl, ey f)i, ey Pj, . Pk+l)
where ID\Z means that the term P; does not appear. We have 6*T! o §¥ = 0 and the Lichnerowicz-Poisson
cohomology corresponds to the complex (x*(Ap),d%). Let us note that x*(Ap) is trivial as soon as k > n.
A description of the cocycle §%¢ is presented in [?] in the 3-dimensional case using the vector calculus. We

will describe these formulae using exterior calculus for the dimension greater or equal to 3. Let us begin with
some notations :

e To any element P € A =x"(Ap), we associate the n-exterior form

3, (P) = PdX1 A ... ANdX,.

e To any ¢ € X*(Ap), we associate the n — k exterior form

q)n,k((P) = Z (_1)5(0)90()(0'(1) oo Xa(k))an(kJrl) AN an(n)

OGSk,n,fk
e To any ¢ € x"(Ap) we associate the function ®o(p) = .

Finally, if 6 is an k-exterior form and Y = ) Y;0; is a vector field with Y; € A then the inner product i(Y")
of Y by 0 is the k — 1-exterior form given by

iY)0(Z1,- - Zk—1) =0(Y, 21, , Zg—1)

for every vector field Z3,--- , Z.
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Theorem 59 Suppose n = 3. Then we have
1. For all P € Ap,
Dy(6°P) = QA dP.
2. For all f € x'(Ap),

By (61 f) = —i(01,02)[Q A d(i(83)D2(f)) + d(i(D3)Q) A Po(f)]
+i(01, 95)[Q A d(i(92)P2(f)) + d(i(02)2) A 2(f)]
—1(0g,03)[Q2 A d(i(01)P2(f)) + d(i(01)2) A P2(f)

where i(X,Y) denotes the composition i(X) o i(Y).
3. For all ¢ € x*(Ap),
Do(6%p) = i(1, B, 03)(d2 N D1 () + QA dD1 ().

Proof If n = 3 we have
Q = P1odXs3 — Pi3dXs + Pe3dX;

and a = €. Then the integrability of P is equivalent to the integrability condition Q A d€2 = 0. The theorem
results of a direct computation and of the following general formula, which writes in the general case :

VQOEX]C(AP)a @(Plv"wpk) = Z (p(ail,---,aqzk)ailpl"'8’ikPk

1<i <. <ie<n

Application. We consider the Poisson algebra A; = ((C[Xl, X2, X3], P) where P is given by
{ (Xl ) X2)

P(X1, X3)
(X27 X3)

Then we have
dim H°(A;) = 1, dim H'(A4;) = 3, dim H*(A;) = 2, H3(A;) = {0}.

In this case Q = X2dX3 — 2X3dX5 and dQ = 3dXs A dX3. We will look, for example, H%(A;) . Let
© € X*(A1). Then ®¢(62p) = 0 implies dQ A ®1(p) + QA dP;(p)) = 0, that is

Xo(019(X1, X3) + O20(X2, X3)) + 2X3(—01p(X1, X2) + I3pp(X2, X3))
+3p(X2,X3) =0

Now, if f € x!(A1) then

Q1(0f) = [Xo(—02f(X2) — 01 f(X1)) —2X3(05f(X2)) + f(X2)]dX3
—[2X3(01 f(X1) + 03f(X3)) + X2(02f(X3)) — 2f(X3)]d X2
—[X2(—01f(X3)) — 2X3(01 f(X2))]dX;.

Comparing these two relations we obtain that H?(A;) is generated by the two cocycles corresponding to

@1((,01) = ngXg
@1((,02) = X22dX2

Now let us consider the general case. Let A = C[X},...,X,] be provided with the Poisson structure P.
Theorem 60 Let ¢ € x\*(Ap). Then, we have

¢n7k71(5k¢) =€ Z i(aa'(l)v to 7aa(k+1))[d(i<6o(k+2)7 T 7aa(n))Q) A (I)nfk((b)

0ESKk+1,n—k—1

+Q A d(i(ag(k+2)7 e aaa'(n))(pn—k((rb))}

(n—k)(n—k+1)
2 .

where e(n, k) = (—1)
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Proof. To simplify the length of the formulae, we will write d; in front of dX;. We have seen that for every
P € Ap we have °P = Q A dP. But

n—1(0P) ={P, X1}da N---Ndp —{P,Xo}dy ANds---Ndp, +---+
+(=D)"HP, X 1ydi A Adpo Adp + (1) HP, X, }dy A Adyy1.

with R R
{P,X;}dy N---Ndy A+ A Z”P O;Pdy N+~ Ndi N+ Ndy,
- Z+1P]18Pd1/\-~-/\d/\ “Ady

But
{(ON)[QNA(i(02, -+ ,05) L0 (P)) + d(i(O2, -+, 0) ) A Py (P)]

= i(O)[QAd(i(Da, -+ )P (P)] = (—1) "5

= (-1
Similary

WON[QNAE(Dy, -+ 0, 0O (P)) + d(i(Dy, -+ Dy, - @JQ) A D (P)]

—i(O)[QA Dy, D, D) B (P)) = (—1)F 120

(81)[9 ANdP A dl]

n(n—1)

Zl 2P118 Pdg/\ dn:(—l) 2 @n_1<P)(82,~-- ,8n)

(a»)[ﬂ N dP A dX;]

= (~1) 7)) z{—%PualszA- S PPy A A dy
= (—1)i (0, (DI T PyaP — Y PudiP)dy A--- Ady

= (—1)%( l_ -1 P ;0P — Zl Zi jlalp)dl/\"'/\dAj"'/\dn
=<—>"‘"”{PX}d1A Nd A N dy.

We deduce

B, 1 (01f) = (~1)" T S (-1 @) A (D, Dy, 8B (P))

Jj=1

which proves the theorem for £ = 1. The proof is similar for any k.

Application. We consider the n-dimensional complex Lie algebra defined by the brackets

[X1,X;]=(G-1)X;

for i = 2,...,n.. Let P the Poisson bracket on C[X1, ..., X,] given by P(X;, X;) = [Xi, X;]. Let x5(Ap)
the subspace of x*(Ap) whose elements are homogeneous of degree 2. We denote by H3(Ap) = Z2/B3 the

corresponding subspace of H3(Ap). Let N = %

e If n is even, then
dimB3 =N+ (N —-1)+ ...+ N—-n/2+1=n?*2n—1)/4.
e If n is odd, then
dimB3 =N+ (N -1)+(N-1)+..+(N—(n—1)/2) = (n—1)(2n* +n+1)/4.
In fact, if f € x3(Ap), then f(X;) = P; and P; is homogeneous of degree 2:
P =%d,  ; X{Xp. . X

with i1 + ....7,, = 2. We deduce :



7.2. POISSON STRUCTURES OF DEGREE 2 ON C[Xy, X3, X3] 89

1. In the expansion of §f(X7, Xo;) we find N — [ independent coefficients of P;. The coefficients which
do not appear are:
2l 21 21
azo,o0,...,0,1,0,....,00 20,1,0,...,0,1,0,...,05 --+»?0,0,..,1,1,0,...,0
(the second 1 are in the places 21,21 — 1,...,1 + 1.
2. In the expansion of ¢ f(X7, Xo;11) we find N — [ — 1 independent coefficients of Py 1. The coefficients
which do not appear are:

20+1 20+1 20+1
a1.0,0,...,0,1,0,...,00  20,1,0,...,0,1,0,...,00  ---240,0,..,0,2,0,...,0

(the second 1 being in place 21 + 1,21, ...,1 + 2 and in the last case the 2 is in place [ + 1).
3. And 0f(X;, X;) for i > 2 and j > i is defined by the (n — 2) coefficients a} 5o 1.0, 0-

Now we are to able to find the generators of H3(Ap). We can choose ¢ € x3 such that
O(X1, Xz) = 01 2,2
¢(X1,X3) = ay3X1 X5 + a7 ;X3

O( X1, Xo1) = a1 Qlele + a1 21 T X X1+t al 21 Xle+1
(X1, Xor1) = a1,21+1X1X2l+1 + a1,21+1X2X21 +ot a1,2l+1Xl

(X1, X,) = ayn X1 X + a7 XaXoq + ..
¢(X17X]) A 1,J

where A; ; is a degree 2 homogeneous polynomial without monomial of type X; X and X;X;. If we solve
®,,_5(6¢) = 0 we obtain the generators of H2(Ap). They are given by

¢(X17X2) 022
¢(X17X3) a 3X22

¢(X1,X21) =a? géilele 14+ alllglleXzH
141,041
¢(X17X2l+1) =a; 21+1X2X2l oAy X

¢(X1,X )= at T X Xy A e+ a T X X g, i 1= 2m
(b(leX]) Az,]

m+1 m+1X2

the last term being a; i1, ifn=2m+1.

For example:
-ifn=2,dimH3(A,A) =1,
-if n =3, dimH3(A, A) = 3,
-if n =4, dimH3(A, A) =

) =

-if n =5, dimH3(A, A) = 16

7.2 Poisson structures of degree 2 on C[X7, Xo, X3

Let P be a Poisson structure on A = C[X1, X2, X3]. It writes P = X P;;0; A 0; with P;; € C[X1, X2, X3].
We will say that P is of degree k if k = max(d°P;;). It is homogeneous if all the P;; are homogeneous with
the same degree. The homogeneous Poisson structure of degree less than 2 are well known. We will look in
this section the non homogeneous case with k£ < 2. In this case P writes

P=Py+P1+ P>
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where P; is homogeneous of degree i. The associate form 2 is decomposed in homogeneous part Q =
Qo + Q1 + Qs. As Q is en integrable Pfaffian form, we obtain

Qo AdQy =0

Qo AdQy =0

Qo AdQy + Q4 AdQy =0

Qo AdQs + Qg AdQg +Qy AdQy =0
Q1 A dQs + Qs A dQy = 0.

If £ =0, then Q1 = Q3 =0 and € is isomorphic to one of the following form

Q=0
02 =02 = dXs.

If k=1, then Q5 = 0 and  is isomorphic to one of the following form

03 = O = Xyd X,

O = QF = Xod X3 + XadXo + X1dX,
QS = Q‘;) = XQng — CngdXQ

O = Q? = (X2 + X3)d X5 — X3dXs

O = Q2+ Q7 = dX3 — X3dXo

08 = 02 + Q% = X3d X5 — dXo

09 = Q) + Q) = X2d X3 + X3dXo + dX;

The Poisson structures associated to Q, Q¢ i = 3,4,5,6 correspond to the classification of 3-dimensional
complex Lie algebras. For Q2,Q7, Qf and Qf, they are associated to 4-dimensional complex Lie algebra with
1-dimensional center contained in the derived subalgebra.

Let us suppose now that k = 2. If Q¢ = Q; = 0, then Qs is homogeneous and the classification is given
in ([?]). Thus we will assume that Qg or Q; is nontrivial. In this section we will describe the corresponding
classification up a graded linear isomorphism of the graded algebra A = @,>¢ V,, where V,, is the space of
degree n homogeneous polynomials.

Definition 61 We call equivalence of order 2, any linear isomorphism
f : @nZOVn - EBnZOVn
satisfying
o f(VH) Vi@V,
o f(Vo) =Vo

b f |®7122V7L:Id

Such a mapping is written

~

—~

s
|

D alX;+ ) bX; X

[(XiX;) = XiX;
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If the Poisson bracket on A induces a Lie algebra structure on V; (that is 1 AdQ; = 0) we will impose that
w1 o f is a Lie automorphism of Vi, where 7 is the projection on V;. We define a new Poisson structure on
A putting Y; = f(X;) and
{Vi, Y} = F({F(X0), F(X;)}).
These two Poisson structure are called equivalent.
First case : Qg = 0.

The Poisson structure is given by Q = Qy + Q5 with

Q1 ANd2 =0
Ql/\dQQ"’QQ/\dQl:O
Qs AdQy = 0.

Thus Q) = Q) , i =1,3,4,5,6 and V; is a Lie algebra. Let
Oy = AgdXs — AydXy + AsdX,

be with
A1 = a1X12 +a2X22+a3X§ +(Z4X1X2+0,5X1X3 +(16X2X3
Ay = b1 X7+ boX3 +b3X5 + by X1 X + b5 X1 X3 + b Xo X3
Az = a1 Xi+eaXd+ X5+ X1 Xo + s X1 X3 + 6 Xa X3,

If dQ2 = 0 then we have to solve Qz A dQy = 0 with Q; Q% | i =1,3,4,5,6. For i = 1, 3,4 we have dQ; =0
and d€), = 0 is equivalent to

Al = a1X12+a2X22 +a3X§ +a4X1X2 +a5X1X3—|—a6X2X3
A2 = b1X12 + b2X22 - %X?? + b4X1X2 - CL4X1X3 - 2(12X2X3

b
A3 = 01X12 - §4X22 + %X?)Q - 2b1X1X2 + 2a1X1X3 + CL4X2X3.

For i = 5 we have Ql = X2dX3 — OthdXQ thus dQl = (1 +Oé)dX2 /\ng with 1+« 7£ 0. Thus QQ /\dQl =0
implies A3 = 0. For ¢ = 6, we have d2; = 2dXs A dX3 and Q9 A d2; = 0 implies also A3 = 0.

Let us assume that d€) # 0. If Q5 = Q3,03 then 5 have to satisfy

Q1 ANdQ2 =0
Qo NdQy =0

This implies Pd€); = 21 A3 where P is an homogeneous polynomial of degree 2. We will solve this equation
in each of these cases after a simplification of Q5 by equivalence.

L] Ql = Q‘rf = X3dX3 .
Let us consider the equivalence of degree 2 given by Y; = X; for i = 1,2 and Y3 = X3 + B with B € V5. We
obtain the equivalent Poisson structure

{Xl,XQ}ZXg—B
{Xl’X3} = {XlaB}
{X2, X3} = {X», B}

Thus we can suppose that 2 = X3dX3 — AsdXs + A3d X with Ay, A3 € V5. Let us note that an equivalence
of degree 1 permits to simplify one coefficient to As or Az. The equation Q; A Qs = PdQs is written

—01As — 02A3 =0

P63A3 = —X3A3
P83A2 = —X3A2.
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If X3 is not a factor of P, then 034 = aX3 and 0343 = 8X3. If a = 3 =0, then Ay = A3 =0 and Q5 = 0.
Let us assume that « # 0. Then

Ay =1 X7 + 0o X2 +b3X2 + by X1 X,

with o = 2b3. If 8 # 0, then P = _(é)AQ = —(%)Ag. As we can simplify one coefficient of A or As, this
hypothesis can be eliminated. Then § = 0 this gives A3 = 0. The first relation implies —0; As = 0 that is

Ay = by X2 + b3 X2
We deduce the following Poisson structure given by
0% = X3dX3 — (bo X3 + b3 X3)dXo.
Let us assume now that P = X30Q where @ is a degree 1 homogeneous polynomial. This gives

—01A5 — 0A3 =0
Q03A3 = —A3
005 Ay = — Ay,

If b3 # 0,then we can consider that b3 = 1 and

1 b b
Ap = (2X5 4 b5 X1 + beXo) (5 X5 + le + sz).
We deduce . 5 b
AB = (§X3 + Z5X1 + ZGXQ)adAg

As we can suppose that the coefficient of X3 invAs vanishes, thus A3 = 0 and d; A> = 0. This gives

1 b b2 b
Az = (2X5 + b X2) (5 X5 + fxz) — fxg + X2 + bgXo X3 = (56)(2 + X3)2

Proposition 38 Every Poisson structure on C[Xy, Xo, X3] whose linear part is given by Qy = X3dX3 is
equivalent to

{Xl’XZ} =X3
(P1) = ¢ {X1,X3} = b2 X3 +b3X3
{X2, X3} =0.
{XlaXQ}’ - X3
(P2) =< {X1,X3} = (aX2 + X3)?
{X2, X3} =0.
{X1;X2} = X3
(P3) = {XlaXS} = b1X12 + b2X22 + b4 X1 X5
{XQ;XB} = 01X12 - %ng —2b1 X1 Xs.

The last case corresponds to d€2; = 0.

[ ] Ql = Qzll = X2dX3 + X3dX2 + deXl .
If we consider 2 = 0, the change of basis given by Y1 = X; + B,Y; = X5,Y3 = X3 gives a structure of

degree 2 corresponding to A3 = —B equivalent to the structure associated to €2 = ;. Thus we can suppose
in Qs that A3 = 0 that is Q3 = A1dX3 — A>dXs. By hypothesis, Pd2s = Q1 A Qs with P € V5. But

O A Qs = — X1 Apd X1 AdXo + X1 A1dX7 A dXs + (A Xs + A1 X3)dXs A dXs

this gives
P61A2 = X1A2
P81A1 = X1A1
P(82A1 + 83A2) = (A2X2 + A1X3)
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This polynomial system can be easily solved. We obtain the following solutions:

(651 (65 g
A = 7X12 + E(al —ag) X3 + %(al - aG)XB? +as X2 X3
AQ = %Al
aq
A = 0
Ay = %X% + b2 X2 + s Xo X3
Al = aXi Xy
Ay = —ay X1 X3

Then we have

Proposition 39 Fvery Poisson structure on C[X1, Xa, X3] whose linear part is given by 3 = XadX3 +
X3dXs + X1dX, is equivalent to

{Xl,XQ} = X5+ %XIQ + %(O&l — CLG)XQQ + ;TZ(OQ — ag)Xg + agX2X3
(Py) =< {X1,X3}=—-X3+ %(%X% + %21(041 —ag) X3 + 2“712(041 — ag) X2 + ag X2 X3)
{X2, X3} = Xy
{X1, X2} =Xy
(PE)) = {XlaX?)} - _XS + %Xlz + b2X22 —+ 042X2X3
{X2, X3} = X;.

{X1, X2} = Xo + as X1 X
(Ps) = ¢ {X1, X3} = —X3 —as X1 X3

{X9, X3} = X;.

{X1, X0} = Xo + a2 X3 + a3 X3 + as X2 X3
(P7) =14 {X1, X3} =—X3+b2X3 — % X3 —20,X2X3

{ X2, X3} = Xi.

The last case corresponds to d2s = 0.

L] Ql = Q? = X2dX3 — OéX3dX2
Let us assume that o # 0 and o # —1. The equivalence given by Yo = X5 + B5,Y; = X, for i = 1,3 and
By € V5 shows that the structure corresponding to 2 = 2; is equivalent to a structure of degree 2 given by

A1 = CL2X22 + ang + %X1X2 + C3X1X3
Ay =0
A3 = 03X32 + C5X1X3 + CGXQXg

Thus we can assume that in Q we have c3 = ¢5 = ¢ = a2 = a3 = ag = 0. The new equivalence of degree 2
given by Y3 = X3+ B3, Y; = X, for i = 1,2 and B3 € V5 gives a Poisson structure of degree 2 equivalent to
the structure of degree 1 with

ﬁ; _ 22X22 + b3 X3 — o X1 X2 + € X1 X3
Az =2 X3 + caX1Xo + X2 X3
Thus we can assume that
Qo = (a1 X2 + as X1 X5 + a5 X1 X3)d X1 + (01 X2 + by X1 Xy + b5 X1 X3)d Xy + c1 X2dX5.
Now Q1 A dQs + Qo A d2y = 0 implies

Qo = a4 X1 Xod X + alphaays X1 X3d X5.
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If « = —1 then d©2; = 0 and 27 A dQ2s = 0 implies
Qo = (A] = 4y X1 X + a6 X2 X3)d X1 + (—as X1 X3 + b X2 X3)dXs + ¢ X2dX3.
The equation 29 A dQs = 0 implies ¢1bg = crag = asbg = agag = 0.
If @ =0, by equivalence of degree 2 we can assume that
Qo = a3 X2dX, + (b1 X7 + b3 X3 4+ b5 X1 X3)dXo + (2 X3 + c3X5 + 4 X1 X + c6 X2 X3)d X3,

But Q1 A dQs + Q2 AdQy = 0 and Qo A dQ = 0 implies Xo(01 A2 + 02A43) + A3 = 0 that is ¢ = 0 and
azCqy = agzCg = b3C4 = bgCG =0.

Proposition 40 Every Poisson structure on C[X;, Xo, X3] whose linear part is given by Q1 = XodX3 —
aXs3dXs is equivalent to

{X1, X2} = X+ as X1 X5
(PS) = {Xl,X3}:OLX3+Ota4X1X3 047é —1,0
{XQano} =0.
{X17X2} = X9 +agX2X3
(Pg,Oé = 71) = {Xl,Xg} = —X3 + b6X1X3
{X2, X3} =0.
{X1, Xo} = Xo + a4 X1 Xo
(Pl0,0é = —1) = {Xl,Xg} = 7X3 — (14X1X3
{XQ,XS} = 01X12.
{X1, Xo} = Xo
(Pll,a = O) = {Xl,X3} = b1X12 + b5X1X3
{XQ,X3} = C2X22 + C4X1X2 —|— 86X2X3..
{Xl,XQ} = X2 + ang
(P12,0[ = O) = {Xl,Xg} = le12 + b3X32 + b5X1X3
{Xg,Xg} = 02X22.

o O = Of = (X5 + X3)dX3 — X3dX,. By equivalence of degree 2, we can assume that A; = 0,c5 = 0
and by = 0. The equation Q1 A dQs + Qs A dQy = 0 implies ¢; = ¢4 = by = 0,¢c6 = —bs = 2¢5. The equation
Qs A d€2y = 0 implies ¢co = 0 and bscg = bgez = 0. Then we have

Proposition 41 Fvery Poisson structure on C[X1, X2, X3] whose linear part is given by Q; = (X2 +
X3)dX3 — X3d X5 is equivalent to

{X1, X2} = X0+ X3

(P13) =< {X1, X3} = X3+ ba X3 + b3 X2 + b X2 X3
{X27X3} =0.
{X1, X0} = X0+ X3

(P1a) = {X1, X3} = X3+ b3 X3

{X27X3} = CgX??.

Second case £y # 0.
Here the Poisson structure is given by € = Q¢ + Q1 + Q5. As Qg is of degree 0, the d2y = 0. We have

Qo ANdQ =0
Qo ANdQs + QL ANd2; =0
Q ANdQy + Q3 ANdQY =0
Qo ANdQdy = 0.
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The form Qg & Q; provided the vector space V) @ Vi with a linear Poisson bracket. Then Vy @ V; is a ie

algebra such that V{ is in the center. This implies Q1 A dQ2; = 0. The form Qg = A1dX3 — Axd X + A3d X,
satisfies:

Qo AdQy =0
QL AdQ + Q5 Ad2 =0
Qo ANdQ2y = 0.

. N =0"= Q% + Omega] = dX3 — X3dX,. By equivalence we can assume that az = a5 = by = c5 = 0.
The equation Qg A dQy = 0 implies by = —2c¢a, ¢4 = —2b1,c6 = —bs, Q1 A dQ2s + Qo A d2; = 0 impliesc; =
co=c3=cq4=0,a1 =a4 =0, and Qs A dQy = 0 gives bsby = bsas = bsag = 0.

Proposition 42 FEvery Poisson structure on C[X1, X2, X3] given by Q@ = dX3 — X3d X5 + Qg is equivalent

to
{Xl,XQ} =1 + a2X22 + CL6X2X3
(P1s) = 4 {X1, X3} = X3+ 02 X3 + b6 X2 X5
(X2, X3} = 0.
{X1, X2} =1
(Pl(i) == {Xl, Xg} = X3 + b5X1X3 + b6X2X3

{ X2, X3} = —b5 X2 X3.

e N=08%= Q% + 08 = X3dX3 — dXy. We can assume that Ay = by X2 + by X1 X2. As dQ; = 0, the system
is reduced to Qg A d22 = Q1 Ad€2y = 0. This gives ¢y = cg = a4 = 0 and by + 2¢o = a5 — 2¢3 = 2a1 —¢5 = 0.
Thus Q9 A dQs = 0 is equivalent to (2a2X2 + agX3)As = 0.

Proposition 43 Every Poisson structure on C[X1, Xo, X3] given by Q = X3d X3 — dXs is equivalent to

{X17X2} =1 + a1X12 + CL2X22 + CL3X32 + CL5X1X3 + aﬁXng

(Pi7) = ¢ {X1, X3} = Xo + b2X5 + by X1 X,

{X2, X3} =0.

{Xl,Xg} =1 +CL1X12 + G3X§ +CL5X1X3
(P1s) = {X1, X3} = X + b5 X1 X35 + b6 X2 X3

{Xo, X5} = o1 X7 — B X3 + % X2 + 201 X1 X5.

e O =0%=032+ 0 = X2dX3 + X3dX5 + dX;. By equivalence we can assume by = by = a3 = a5 = g =
Cs = 0. As dQl = O7 the equation QO A dQQ = Ql A dQQ =0 1mphes b6 + 2&2 = ag + 2b3 = a4 = a1 = b1 =
by = c3 =0 . In this case Q3 A dQds = 0 is equivalent to cg(X2A2 + X347) = 0.

Proposition 44 Fuvery Poisson structure on C[ X1, X2, X3] given by Q = Xod X5+ X3dXo+d X is equivalent

to
{X1, X5} = Xo + as X3 + ag X2 X3
(Pro) =4 {X1,X3} = —X3 — ©X? —2a,X>X;3
{X9, X3} =1+ c1 X3
{X1, X0} = X»
(Pao) = ¢ {X1, X3} = —X3

{XQ,Xg} =1 + ClX%.

7.3 Poisson algebras associated to rigid Lie algebras

7.3.1 Rigid Lie algebras

We fix a basis of C™. With respect to this basis, a multiplication u of a n-dimensional complex Lie algebra
is determined by its structure constants ij which satisfy the Jacobi polynomial conditions. We denote by
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L,, the algebraic variety (C[(CZ] /I where I is the ideal generated by the polynomials:

{ CE + CZ;?Z. =0
=1 CiyCi + C51.Cii + CiCl = 0

.

for all 1 < 4,7, k,s < n. Then every multiplication p of a n-dimensional complex Lie algebra is identified to
one point of L,,. We have a natural action of the algebraic group Gl(n,C) on L,, whose orbits correspond to
the classes of isomorphic multiplication:

O(p)={f"opo(fxf), feGln,C)}.

Let g = (C™, u) be a n-dimensional complex Lie algebra. We denote always by u the corresponding point
of L,.

Definition 62 The Lie algebra g is called rigid if its orbit O(u) is open (for the Zariski topology) in L.

Amongst rigid complex Lie algebras, there are all the simple and semi-simple Lie algebras, all the Borel
algebras and parabolic Lie algebras. We know also the classification of rigid Lie algebra up the dimension 8
([?] ), the classification of solvable rigid Lie algebras whose nilradical is filiform ([?]). But to day we do not
know any rigid nilpotent Lie algebras. Recall two interesting tools to look the rigidity or not of a given Lie
algebra :

Theorem 63 Let g = (C", u) a n-dimensional complex Lie algebra. Then

1. g is rigid if and only if any valued deformation g’ where the structure constants are in a valuation Ting
R is (K*)-isomorphic to g where K* is the fraction field of R.

2. If H*(g,9) = 0, then g is rigid.

The notion of valued deformation, which extends of natural way the classical notion of Gerstenhaber
deformations also called formal deformations is developed in [23]

The second part of this theorem is the Nijenhuis-Richardson theorem. But its converse is not true. There
exists solvable rigid Lie algebras with H?(g, g) # 0. This fact can be interpreted as follows: let

pe=p+ Yt

i>1

a deformation of p with coefficient in the valued ring of formal series C[[¢t]]. As u; is a multiplication of Lie
algebra, this implies in particular that ¢; € H?(g,g). If p is rigid, then, from the first previous result, y; is
isomorphic to y, the isomorphism belonging to Gl(n,C[[t]]). If H?(g,g) = 0, then every deformation of y is
isomorphic to u and p is rigid. If H?(g, g) # 0, then u is not rigid or p is rigid and there is ¢; # 0 € H?(g, g)
which never is the first term of a deformation of u.

7.3.2 Finite dimensional rigid Poisson algebras

We recall in this section a result of [29] which precises the structure of a finite dimensional complex Poisson
algebras whose the underlying Lie bracket is rigid. Let P a finite dimensional complex Lie algebra. We denote
by [X,Y] and X.Y the corresponding Lie bracket and associative multiplication. If the bracket corresponds
to a simple complex (and thus rigid) Lie algebra, then the associative product is trivial : X.Y = 0. Let us
assume now that the Lie bracket corresponds to a rigid solvable Lie algebra. We recall the following result:

Proposition 45 Let g be a n-dimensional complex solvable rigid Lie algebra. Then g is written:
g=tdn

where n is the nilradical of g and t a mazimal abelian subalgebra such that the adjoint operators adX are
diagonalizable for every X € t.
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This subalgebra t is usually called the Malcev torus. All these maximal torus are conjugated and their
common dimension is called the rank of g. Then we have [29]

Proposition 46 Let g be a rigid solvable Lie algebra of rank 1 with non-zero roots. Then there is only one
Poisson algebra P such that gp = g. It is defined by

X - X; = {Xi, X;}.

7.3.3 Cohomology of A,.; = C[X,, X3, -, X,] associated to a rigid Lie bracket

In this section we consider a linear Poisson bracket on C[Xy,---,X,] such that the brackets {X;, X;} =
P(X;, X;) corresponds to a solvable rigid Lie algebra g of rank 1. We assume that the roots [?] of this rigid
Lie algebras are 1,--- ,n. In this case we have

{XoaXZ}:ZX“ i:]_’...’n
{X17Xi}:_X,L‘+17 i:2’...’n_1
{)(27)(1’}:)(7;_;’_27 7,:37’n_2

We denote this (n + 1)-dimensional Poisson algebra by P(g). This algebra is a deformation of the Poisson
algebra studied in section 1.2. The corresponding (n — 1)—exterior form is
-1

(=D Xady A o Ady A Ay + S0 (=1 X qdo Ady Ao Ady A .. A dy,
=2

(1)1 X ado Ady Ads Ao Adis A . Ady,

M=

Q =

3 .
Rl
[\DH

+
Il
w

i

where d; denotes dX; and d; signifies that this term does not appear is the considered expression. Let ¢ be
a 2-cochain. We denote by (i, j) the vector ¢(X;, X;). The ¢ is a 2 cocycle if and only if

D, 1(p) = (=1)"2p(1,i)do Ady A ... Nds A ... Ndy,
n . ~

+ S (=1)"tp(2,i)do Ady Adz A .. Ndi A ... Ndy
=3

+ oo (=17 (i, f)do A e Adi Ao A A A,
3<i<j<n

satisfies
d(i(aa(l)v seey ao’(n72))Q) A (I)n—l(@) + QA d[i(aa(l)v ey aa(n72))q)n—2(90)] =0 (71)

for any o € S5 ,,—2.

As g = t®n, we have the decomposition P(g) = P(t)  P(n) where P(t) (respect. P(n)) is the polynomial
algebra generated by Xy (respec. by Xi,...,X,]). From the Hochschild-Serre factorization theorem, we
assume that the cocycles are t-invariant and with values in P(n). We denote this space by x*(P(g), P(g))*.

If fex'(P(g),P(g)) then
{Xo, f(Xi)} = if(Xi)

and we obtain

F(X1) = al Xy, f(Xo) = ' X} + a3 Xa, . f(Xa) = Y alleXpXpE

Thus 0 f(X1, X;) = ai {X1, X;} + {X1, f(Xi)} — f(Xi+1) and we can reduce any element ¢ € Z2(P(g, P(g)*
to a 2-cocycle satisfying
o(X1,X;)=0fori=2,....,n—1.

We denote by Z;:(P(g,P(g))* (resp Bj, Hj) the subspace homogeneous cocycle of degree k.

Let us look the system on the (4, ) which is deduced from equation(1).
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-If (0(1),...,0(n —2)) = (3,4, ...,n) then (1) is trivial.
-1 (0(1),...;0(n—2)) = (2,3, ..., ], ...,n) then (1) is trivial as soon as [ # n. If | = n then (1) is reduced to

ne(X1, Xn) + (1" iXi0ip(X1, Xp) =0

and ¢(X7, X,,) is of weight n + 1.
-If (0(1),...yo(n—2))=(1,2,...,1,..., }...,n) we obtain

i+ De(Xi, X;) = Y kXxOhp(Xi, X;)
and ¢(X;, X;) is of weight i + 1.
SIf (0(1),.yo(n—2)) = (0,1,2, ...,3, ..., §, .o K, . .. ,n) with i > 3, then we obtain
QA d(o( X, X5)d Xy + o( Xy, Xi)d X 4 o(Xj, Xp)dX;) =0

-If (0(1),...,0(n —2)) = (O 3,...,1,...,n) we obtain relation between ¢(3,1) and (2,1 + 1). We deduce
that ¢(2,4) generates Z7(Ap, Ap)! more precisely we have
(

©(Xo, Xiy1) +0(X3, Xi) = X3020(2,7) + Xa030(2,7) + ... + Xp0n_19(2,1).
In case of k =1, ¢(2,1) = ag; Xo4; if i <n —2.

Case k=1 As p(X1,X,) is of weight n + 1, then ¢(X;, X,,) = 0. We have also ¢(X;, X;) = azijiﬂ' if
147 < n.
If (o(1),...,0(n —2)) = (1,2,...,[,...,jA,...,n) we obtain (i + j)o(X;, X;) = 3 kXpOkp(X;, X;) and
©(X;, X;) is of weight i + 1. Then ¢(X;, X;) = aZ”XZ-H ifi+j <n.
If (o(1),...,0(n—2)) = (0,3,...,l ,...,n) we obtain relation between ¢(3,1) and ¢(2,1+1). We deduce that
©(2,i) generates Z7(A,, Ap)" more precisely we have
<P(X27X1',+1) + (p(Xg,Xz) = X3(92§0(2,Z) + X483Q0(2,’L) + ...+ Xnan_lgﬁ(Q,’L)
In case of k =1, ©(2,1) = ag; Xo4; if i <n —2.
Then we have agi41) + az; = az; if 3 < i < n — 2. Their relation gives
Qiy1j + Qij41 = Qg
Qit2j + Qijr2 = Qi

We deduce that

Lemma 8 Ifn > 7, then HE(Ap, Ap) is of dimension 1 and generated by the cocycle given by
Lp(XQ,XZ‘) = (’L - 1>X2+i 1= 47 ey U — 2
(X3, X;) = X34y i=4,...,n-3
©(X;,X;) =0 in other case
The nilradical is filiform. These algebras have been studied in [?]. We have
e For n =23, 4, then g, is not rigid.
e For n = 5,6, then g, is rigid with H?(g,,g,) = {0}.
e For 7 <n <11, g, is not rigid.
e For n > 12, then g, is rigid with dimH?(g,,g,) = 1. In this case a basis of H?(g,, g,) is given by the

cohomology class of the 2-cocycle which satisfies

H(X, X)) =0, i>1

H(X1,X;) =0, i>2

¢(X23X3) - 07 ) ¢(X2aXl) = (4 - Z)Xz+27 >4
o(X3, Xi) =i+3, 1>4

G(X;, X;) =0, 4<i<j<n
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7.3.4 Deformations of Enveloping algebra of rigid Lie algebra

In [G, A] the rigid solvable Lie algebras such that n is a filiform Lie algebras (that is of maximal nilindex)
are classified using the determination of the set of roots associated to the action of ¢ on n. In the next
section, we consider H?(Asz, A3) where A3 is the Poisson algebra on A where linear part is nothing that this
rigid Lie algebra.

The Poisson algebra Aj;

Let G be the Lie algebra defined in the Poisson {Xg, X1, ..., X, } by
[Xo,XZ‘} :ZXZ z':l,...,n
(X1, Xi]=Xip1 i=2,..,n—1
[XQ,XZ‘} :Xi+2 i:3,...,n—2
The rigidity of the Lie algebra is proved in [C'A]. Let P be the Poisson bracket on C[Xj, ..., X,,] such that
{X:, X} = P(X;, X;) = [ X3, Xj].

The corresponding (n — 1)—exterior form is

n n—1 n—2
Q= (1) Xidi A Ady A Adr+Y (=1 X prdoAdaA Ad; A Adp+ Y (1) X adoNdy Ads A Ady A Ad,
i=1 =2 =3

where d; denotes dX; and d; signifies that this faction does not appear is the considered expression.

The ¢ is a 2 cocycle if and only if

D, _1(p) = (—=1)"2¢(1,i)do Ada A ... Ad; A ... Ndy,
+ S (=1 p(2,d)do Ady Ads Ao Ad; Ao Ady,
=3 o ~ ~
+ > (D) e f)do A Ndy A Ndy AN dy,
3<i<j<n

satisfies
d(i((f?g(l), ey 80(,1,2))(2) A q)nfl(go) + QA d[i(80(1)7 ey 80(,1,2))(1%,2(90)} =0
for any o € S5 ,,—2.

As G = t @ n, we have the decomposition A3 = As(t) ® As(n) where As(t) is the polynomial algebra
generated by Xy and A(n) = C[Xq, ..., X,,]. From the Hochschild-Serre factorization theorem and with assume
that the cocycles are t-invariant and with values in A3(n). We denote this space by x*(Asz, A3(n))t. If f €
x'(As, A3(n))" then f{Xo, X;} = if(X;) and we obtain f(X1) = a1 X1, f(X2) = ai' X{ + a3 Xa, .., f(X;) =

at XX
Litotle=i

Thus 0 f (X1, X2) = a{ {X1, Xo}-+{X1, f(X1)}—f(Xi11) and we can reduce any element ¢ € Z2(Ap, Ap(n)) to]

a 2-cocycle satisfying
(X1, X;))=0fori=2,....,n— 1.

We denote by Zj(A,, Ap(n))! (resp Bj, H}) the subspace homogeneous cocycle of degree k.

Case k=1 If (o(1),...,0(n —2)) = (3,4, ...,n) then is trivial.

If (o(1),...,0(n—2)) = (2,3,...,k ,...,n) then is reduced to np(X1, X,,) + (=1)" "1 3 i X;0;0(X1, X,,) =0
and (X1, X,,) is of weight n + 1 Then as k=1, p(X;,X,) =0.
If (6(1),..,0(n —2)) = (1,2,...,i ,.0j ,...,n) we obtain (i + 7)o(Xi, X;) = > kXpOkp(Xi, X;) and

o(X;, X;) is of weight ¢ + 1. Then @(X,,X )= Xitjifi+j <n.

+
ZJ
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If (o(1),...,0(n—2)) = (0,3, ...,l ,...,n) we obtain relation between ¢(3,1) and ¢(2,1+1). We deduce that

©(2,1) generates Z7(A,, A,)! more precisely we have
(p(XQ, Xi+1) + (p(Xg, Xl) = X382¢(2, Z) + X483§0(2, Z) + ...+ Xnan_lga(Q, Z)

In case of k =1, ¢(2,i) = ag; Xoy; if i <n —2.

Then we have agi11) + azi = az; if 3 < i <n — 2. Their relation gives

Ait+1j + Qij+1 = Q45
Qit2j + Ajj12 = Q45

We deduce that
Lemma 9 Ifn > 7, then H{(A,, A,) is of dimension 1 and generated by the cocycle given by
@(X27Xi) = (7' - 1)X2+i i = 4a sy TV 2

O(X3,Xi) = X34i i=4,..,m—3
©(X;, X;) =0 in other case

Application. Let us consider the multiplication given by

/L(X07XZ) = ’LXZ 1= 1, N

M(leXi) = XiJrl 1= 2, ey — 1

(X2, X3) = X5

[IJ(XQ,Xz) = (5 - i)X2+Z‘ = 4, ey U — 2

[L(Xg,Xl) :X3+l‘ Z:47,TL73

This product is not a Lie algebra product because ¢ is a not integrable cocycle. But p as a "non Lie”

deformation of the product of the rigid algebra G.
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